ﻻ يوجد ملخص باللغة العربية
In our quest for investigating the nature of dark matter from the way its constituents interact with ordinary matter, we propose an experiment using a pbo ~calorimeter to search for or set new limits on the production rate of i) hidden sector dark matter mediator in the $3 - 60$ MeV mass range via their $e^+e^-$ decay (or $gammagamma$ decay with limited tracking), and ii) the hypothetical X17 particle, claimed in two recent experiments. The search for these particles is motivated by new dark matter models and candidates introduced to account for the small-scale structure in astrophysical observations and anomalies such as the 4.2$sigma$ disagreement between experiments and the standard model prediction for the muon anomalous magnetic moment, and the excess of $e^+e^-$ pairs from the $^8$Be M1 nuclear transition to its ground state observed by the ATOMKI group. In these models the $1 - 100$ MeV mass range is particularly well-motivated and the lower part of this range still remains unexplored. The proposed direct detection experiment will use a magnetic-spectrometer-free setup (the PRad apparatus) to detect all three final state particles in the visible decay of the dark matter mediator allowing for an effective control of the background and will cover the mass range in a single setting. The use of the well-demonstrated PRad setup allows for an essentially ready-to-run and uniquely cost-effective search for dark matter mediator in the $3 - 60$ MeV mass range with a sensitivity of 7.2$times$10$^{-8}$ - 5.9$times$10$^{-9}$ to $epsilon^2$ the square of kinetic mixing interaction coupling constant. In the first appendix, we show an example of this type of analysis using the $^{12}$C data from the PRad experiment. In the second appendix, we detail the additional work that was done after submitting this proposal before presenting at the JLab PAC49.
Measuring the depolarization rate of a $^3$He hyperpolarized gas is a sensitive method to probe hypothetical short-range spin-dependent forces. A dedicated experiment is being set up at the Institute Laue Langevin in Grenoble to improve the sensitivi
The hidden sector photon is a weakly interacting hypothetical particle with sub-eV mass that kinetically mixes with the photon. We describe a microwave frequency light shining through a wall experiment where a cryogenic resonant microwave cavity is u
Physics beyond the Standard Model predicts the possible existence of new particles that can be searched at the low energy frontier in the sub-eV range. The OSQAR photon regeneration experiment looks for Light Shining through a Wall from the quantum o
Hidden U(1) gauge symmetries are common to many extensions of the Standard Model proposed to explain dark matter. The hidden gauge vector bosons of such extensions may mix kinetically with Standard Model photons, providing a means for electromagnetic
Many extensions of the Standard Model of particle physics predict a parallel sector of a new U(1) symmetry, giving rise to hidden photons. These hidden photons are candidate particles for cold dark matter. They are expected to kinetically mix with re