ﻻ يوجد ملخص باللغة العربية
We study the conductive and convective states of phase-change of pure water in a rectangular container where two opposite walls are kept respectively at temperatures below and above the freezing point and all the other boundaries are thermally insulating. The global ice content at the equilibrium and the corresponding shape of the ice-water interface are examined, extending the available experimental measurements and numerical simulations. We first address the effect of the initial condition, either fully liquid or fully frozen, on the system evolution. Secondly, we explore the influence of the aspect ratio of the cell, both in the configurations where the background thermal-gradient is antiparallel to the gravity, namely the Rayleigh-Benard (RB) setting, and when they are perpendicular, i.e., vertical convection (VC). We find that for a set of well-identified conditions the system in the RB configuration displays multiple equilibrium states, either conductive rather than convective, or convective but with different ice front patterns. The shape of the ice front appears to be always determined by the large scale circulation in the system. In RB, the precise shape depends on the degree of lateral confinement. In the VC case the ice front morphology is more robust, due to the presence of two vertically stacked counter-rotating convective rolls for all the studied cell aspect-ratios.
The extent and the morphology of ice forming in a differentially heated cavity filled with water is studied by means of experiments and numerical simulations. We show that the main mechanism responsible for the ice shaping is the existence of a cold
Convective flows coupled with solidification or melting in water bodies play a major role in shaping geophysical landscapes. Particularly in relation to the global climate warming scenario, it is essential to be able to accurately quantify how water-
Motived by recent ground-based and microgravity experiments investigating the interfacial dynamics of a volatile liquid (FC-72, $Pr=12.34$) contained in a heated cylindrical cell, we numerically study the thermocapillary-driven flow in such an evapor
Remaining within the pure hydrodynamic approach, we formulate a self-consistent model for simulating the dynamic behavior of matter passing through metastable states in the two-phase liquid-vapor region of the phase diagram. The model is based on the
The generation of a tsunami wave by an aerial landslide is investigated through model laboratory experiments. We examine the collapse of an initially dry column of grains into a shallow water layer and the subsequent generation of waves. The experime