ﻻ يوجد ملخص باللغة العربية
The long-term behavior of a modulationally unstable conservative nonintegrable system is known to be characterized by the soliton turbulence self-organization process. We consider this problem in the presence of a long-range interaction in the framework of the Schrodinger-Poisson (or Newton-Schrodinger) equation accounting for the gravitational interaction. By increasing the amount of nonlinearity, the system self-organizes into a large-scale incoherent localized structure that contains hidden coherent soliton states: The solitons can hardly be identified in the usual spatial or spectral domains, while their existence is unveiled in the phase-space representation (spectrogram). We develop a theoretical approach that provides the coupled description of the coherent soliton component (governed by an effective Schrodinger-Poisson equation) and of the incoherent component (governed by a wave turbulence Vlasov-Poisson equation). The theory shows that the incoherent structure introduces an effective trapping potential that stabilizes the hidden coherent soliton, a mechanism that we verify by direct numerical simulations. The theory characterizes the properties of the localized incoherent structure, such as its compactly supported spectral shape. It also clarifies the quantum-to-classical correspondence in the presence of gravitational interactions. This study is of potential interest for self-gravitating Boson models of fuzzy dark matter. Although we focus our paper on the Schrodinger-Poisson equation, we show that our results are general for long-range wave systems characterized by an algebraic decay of the interacting potential. This work should stimulate nonlinear optics experiments in highly nonlocal nonlinear (thermal) media that mimic the long-range nature of gravitational interactions.
We consider the problem of the formation of soliton states from a modulationally unstable initial condition in the framework of the Schrodinger-Poisson (or Newton-Schrodinger) equation accounting for gravitational interactions. We unveil a previously
Irrotational ow of a spherical thin liquid layer surrounding a rigid core is described using the defocusing nonlinear Schrodinger equation. Accordingly, azimuthal moving nonlinear waves are modeled by periodic dark solitons expressed by elliptic func
We study the azimuthal modulational instability of vortices with different topological charges, in the focusing two-dimensional nonlinear Schr{o}dinger (NLS) equation. The method of studying the stability relies on freezing the radial direction in th
We analyze theoretically the Schrodinger-Poisson equation in two transverse dimensions in the presence of a Kerr term. The model describes the nonlinear propagation of optical beams in thermooptical media and can be regarded as an analogue system for
We present the study of the dark soliton dynamics in an inhomogenous fiber by means of a variable coefficient modified nonlinear Schr{o}dinger equation (Vc-MNLSE) with distributed dispersion, self-phase modulation, self-steepening and linear gain/los