ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhancement of electromagnetically induced transparency based Rydberg-atom electrometry through population repumping

192   0   0.0 ( 0 )
 نشر من قبل Christopher Holloway
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate improved sensitivity of Rydberg electrometry based on electromagnetically induced transparency (EIT) with a ground state repumping laser. Though there are many factors that limit the sensitivity of radio frequency field measurements, we show that repumping can enhance the interaction strength while avoiding additional Doppler or power broadening. Through this method, we nearly double the EIT amplitude without an increase in the width of the peak. A similar increase in amplitude without the repumping field is not possible through simple optimization.We also establish that one of the key limits to detection is the photon shot noise of the probe laser. We show an improvement on the sensitivity of the device by a factor of nearly 2 in the presence of the repump field.



قيم البحث

اقرأ أيضاً

We present an experimental study of cavity assisted Rydberg atom electromagnetically induced transparency (EIT) using a high-finesse optical cavity ($F sim 28000$). Rydberg atoms are excited via a two-photon transition in a ladder-type EIT configurat ion. A three-peak structure of the cavity transmission spectrum is observed when Rydberg EIT is generated inside the cavity. The two symmetrically spaced side peaks are caused by bright-state polaritons, while the central peak corresponds to a dark-state polariton. Anti-crossing phenomenon and the effects of mirror adsorbate electric fields are studied under different experimental conditions. We determine a lower bound on the coherence time for the system of $7.26 pm 0.06 ,mu$s, most likely limited by laser dephasing. The cavity-Rydberg EIT system can be useful for single photon generation using the Rydberg blockade effect, studying many-body physics, and generating novel quantum states amongst many other applications.
We demonstrate theoretically a parallelized C-NOT gate which allows to entangle a mesoscopic ensemble of atoms with a single control atom in a single step, with high fidelity and on a microsecond timescale. Our scheme relies on the strong and long-ra nged interaction between Rydberg atoms triggering Electromagnetically Induced Transparency (EIT). By this we can robustly implement a conditional transfer of all ensemble atoms among two logical states, depending on the state of the control atom. We outline a many body interferometer which allows a comparison of two many-body quantum states by performing a measurement of the control atom.
142 - Qi Zhang , Zhengyang Bai , 2018
We investigate the transient optical response property of an electromagnetically induced transparency (EIT) in a cold Rydberg atomic gas. We show that both the transient behavior and the steady-state EIT spectrum of the system depend strongly on Rydb erg interaction. Especially, the response speed of the Rydberg-EIT can be five-times faster (and even higher) than the conventional EIT without the Rydberg interaction. For comparison, two different theoretical approaches (i.e. two-atom model and many-atom model) are considered, revealing that Rydberg blockade effect plays a significant role for increasing the response speed of the Rydberg-EIT. The fast-responding Rydberg-EIT by using the strong, tunable Rydberg interaction uncovered here is not only helpful for enhancing the understanding of the many-body dynamics of Rydberg atoms but also useful for practical applications in quantum information processing by using Rydberg atoms.
We present a study of the Rydberg spectrum in ts{166}Er for series connected to the $4f^{12} (^3H_6) 6s$, $J_c=13/2 $ and $J_c=11/2 $ ionic core states using an all-optical detection based on electromagnetically induced transparency in an effusive at omic beam. Identifying approximately 550 individual states, we find good agreement with a multi-channel quantum defect theory (MQDT) which allows assignment of most states to $ns$ or $nd$ Rydberg series. We provide an improved accuracy for the lowest two ionization thresholds to $E_{textrm{IP}, J_c = 13/2 } = 49260.750(1),$cm$^{-1}$ and $E_{textrm{IP}, J_c = 11/2 } = 49701.184(1),$cm$^{-1}$ as well as the corresponding quantum defects for all observed series. We identify Rydberg states in five different isotopes, and states between the two lowest ionization thresholds. Our results open the way for future applications of Rydberg states for quantum simulation using erbium and exploiting its special open-shell structure.
We proposed utilizing a medium with a high optical depth (OD) and a Rydberg state of low principal quantum number, $n$, to create a weakly-interacting many-body system of Rydberg polaritons, based on the effect of electromagnetically induced transpar ency (EIT). We experimentally verified the mean field approach to weakly-interacting Rydberg polaritons, and observed the phase shift and attenuation induced by the dipole-dipole interaction (DDI). The DDI-induced phase shift or attenuation can be viewed as a consequence of the elastic or inelastic collisions among the Rydberg polaritons. Using a weakly-interacting system, we further observed that a larger DDI strength caused a width of the momentum distribution of Rydberg polaritons at the exit of the system to become notably smaller as compared with that at the entrance. In this study, we took $n =32$ and the atomic (or polariton) density of 5$times10^{10}$ (or 2$times10^{9}$) cm$^{-3}$. The observations demonstrate that the elastic collisions are sufficient to drive the thermalization process in this weakly-interacting many-body system. The combination of the $mu$s-long interaction time due to the high-OD EIT medium and the $mu$m$^2$-size collision cross section due to the DDI suggests a new and feasible platform for the Bose-Einstein condensation of the Rydberg polaritons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا