ﻻ يوجد ملخص باللغة العربية
Recent advances in the synthesis of polar molecular materials have produced practical alternatives to ferroelectric ceramics, opening up exciting new avenues for their incorporation into modern electronic devices. However, in order to realize the full potential of polar polymer and molecular crystals for modern technological applications, it is paramount to assemble and evaluate all the available data for such compounds, identifying descriptors that could be associated with an emergence of ferroelectricity. In this work, we utilized data-driven approaches to judiciously shortlist candidate materials from a wide chemical space that could possess ferroelectric functionalities. An importance-sampling based method was utilized to address the challenge of having a limited amount of available data on already known organic ferroelectrics. Sets of molecular- and crystal-level descriptors were combined with a Random Forest Regression algorithm in order to predict spontaneous polarization of the shortlisted compounds with an average error of ~20%.
We propose a novel data-driven approach for analyzing synchrotron Laue X-ray microdiffraction scans based on machine learning algorithms. The basic architecture and major components of the method are formulated mathematically. We demonstrate it throu
Spatio-temporally extended nonlinear systems often exhibit a remarkable complexity in space and time. In many cases, extensive datasets of such systems are difficult to obtain, yet needed for a range of applications. Here, we present a method to gene
Orchestrating parametric fitting of multicomponent spectra at scale is an essential yet underappreciated task in high-throughput quantification of materials and chemical composition. To automate the annotation process for spectroscopic and diffractio
The widespread adoption of online courses opens opportunities for the analysis of learner behaviour and for the optimisation of web-based material adapted to observed usage. Here we introduce a mathematical framework for the analysis of time series c
A better understanding of dispersion in natural streams requires knowledge of longitudinal dispersion coefficient(LDC). Various methods have been proposed for predictions of LDC. Those studies can be grouped into three types: analytical, statistical