ﻻ يوجد ملخص باللغة العربية
The nuclear landscape has been investigated within the triaxial relativistic Hartree-Bogoliubov theory with the PC-PK1 density functional, and the beyond-mean-field dynamical correlation energies are taken into account by a microscopically mapped five-dimensional collective Hamiltonian without additional free parameters. The effects of triaxial deformation and dynamical correlations on the nuclear landscape are analyzed. The present results provide the best description of the experimental binding energies, in particular for medium and heavy mass regions, in comparison with the results obtained previously with other state-of-the-art covariant density functionals. The inclusion of the dynamical correlation energies plays an important role in the PC-PK1 results. It is emphasized that the nuclear landscape is considerably extended by the PC-PK1 functional in comparison with the previous results with other density functionals, which may be due to the different isovector properties in the density functionals.
The neutron and proton drip lines represent the limits of the nuclear landscape. While the proton drip line is measured experimentally up to rather high $Z$-values, the location of the neutron drip line for absolute majority of elements is based on t
The three-dimensional tilted axis cranking covariant density functional theory (3D-TAC CDFT) is used to study the chiral modes in $^{135}$Nd. By modeling the motion of the nucleus in rotating mean field as the interplay between the single-particle mo
We report the first global study of dynamic correlation energies (DCEs) associated with rotational motion and quadrupole shape vibrational motion in a covariant energy density functional (CEDF) for 575 even-even nuclei with proton numbers ranging fro
Modern applications of Covariant Density Functional Theory (CDFT) are discussed. First we show a systematic investigation of fission barriers in actinide nuclei within constraint relativistic mean field theory allowing for triaxial deformations. In t
A systematic global investigation of differential charge radii has been performed within the CDFT framework for the first time. Theoretical results obtained with conventional covariant energy density functionals and separable pairing interaction are