ترغب بنشر مسار تعليمي؟ اضغط هنا

The Structure and Thermodynamic Stability of Reverse Micelles in Dry AOT/Alkane Mixtures

43   0   0.0 ( 0 )
 نشر من قبل Peter Harrowell
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Monte Carlo simulation studies of reverse micelles of an anionic surfactant, sodium AOT, in a non-polar solvent provide strong evidence that, in the absence of water, these clusters are charge ordered polyhedral shells. The stabilizing energy of these clusters is so large that the entropy of mixing is, in comparison, inconsequential and we predict that, if all waters of hydration could be removed (something not yet accomplished for the sodium salt) then AOT would be insoluble in nonpolar solvents.

قيم البحث

اقرأ أيضاً

We study the thermodynamic stability of fluid-fluid phase separation in binary nonadditive mixtures of hard-spheres for moderate size ratios. We are interested in elucidating the role played by small amounts of nonadditivity in determining the stabil ity of fluid-fluid phase separation with respect to the fluid-solid phase transition. The demixing curves are built in the framework of the modified-hypernetted chain and of the Rogers-Young integral equation theories through the calculation of the Gibbs free energy. We also evaluate fluid-fluid phase equilibria within a first-order thermodynamic perturbation theory applied to an effective one-component potential obtained by integrating out the degrees of freedom of the small spheres. A qualitative agreement emerges between the two different approaches. We also address the determination of the freezing line by applying the first-order thermodynamic perturbation theory to the effective interaction between large spheres. Our results suggest that for intermediate size ratios a modest amount of nonadditivity, smaller than earlier thought, can be sufficient to drive the fluid-fluid critical point into the thermodinamically stable region of the phase diagram. These findings could be significant for rare-gas mixtures in extreme pressure and temperature conditions, where nonadditivity is expected to be rather small.
We measure stability of two-dimensional granular mixtures in a rotating drum and relate grain configurations to stability. For our system, the smaller but smoother grains cluster near the center of the drum, while the larger, rougher grains remain ne ar the outer edge. One consequence of the size segregation is that the smaller grains heavily influence the stability of the heap. We find that the maximum angle of stability is a non-linear function of composition, changing particularly rapidly when small grains are first added to a homogeneous pile of large grains. We conclude that the grain configuration within the central portion of the heap plays a prominent role in stability.
We study the global influence of curvature on the free energy landscape of two-dimensional binary mixtures confined on closed surfaces. Starting from a generic effective free energy, constructed on the basis of symmetry considerations and conservatio n laws, we identify several model-independent phenomena, such as a curvature-dependent line tension and local shifts in the binodal concentrations. To shed light on the origin of the phenomenological parameters appearing in the effective free energy, we further construct a lattice-gas model of binary mixtures on non-trivial substrates, based on the curved-space generalization of the two-dimensional Ising model. This allows us to decompose the interaction between the local concentration of the mixture and the substrate curvature into four distinct contributions, as a result of which the phase diagram splits into critical sub-diagrams. The resulting free energy landscape can admit, as stable equilibria, strongly inhomogeneous mixed phases, which we refer to as antimixed states below the critical temperature. We corroborate our semi-analytical findings with phase-field numerical simulations on realistic curved lattices. Despite this work being primarily motivated by recent experimental observations of multi-component lipid vesicles supported by colloidal scaffolds, our results are applicable to any binary mixture confined on closed surfaces of arbitrary geometry.
Recently the supercooled Wahnstrom binary Lennard-Jones mixture was partially crystallized into ${rm MgZn_2}$ phase crystals in lengthy Molecular Dynamics simulations. We present Molecular Dynamics simulations of a modified Kob-Andersen binary Lennar d-Jones mixture that also crystallizes in lengthy simulations, here however by forming pure fcc crystals of the majority component. The two findings motivate this paper that gives a general thermodynamic and kinetic treatment of the stability of supercooled binary mixtures, emphasizing the importance of negative mixing enthalpy whenever present. The theory is used to estimate the crystallization time in a Kob-Andersen mixture from the crystallization time in a series of relared systems. At T=0.40 we estimate this time to be 5$times 10^{7}$ time units ($approx 1. ms$). A new binary Lennard-Jones mixture is proposed that is not prone to crystallization and faster to simulate than the two standard binary Lennard-Jones mixtures; this is obtained by removing the like-particle attractions by switching to Weeks-Chandler-Andersen type potentials, while maintaining the unlike-particle attraction.
A mean-field theory is presented which describes the basic observations of recent experiments revealing rich wetting behaviour of n-alkane/methanol mixtures at the liquid-vapour interface. The theory, qualitative and in part heuristic, is based on a microscopic lattice-gas model from which a Cahn-Landau approach is distilled. Besides the physics associated with the short-range components of the intermolecular interactions, effects of the long-range tails of the net van der Waals forces between interfaces are also taken into account. Including weak long-range forces which favour wetting in the theory does not visibly alter the critical wetting transition for the nonane/methanol mixture, in contrast with the generic expectation of first-order wetting for such systems, but in good agreement with experiment. For decane/methanol weak long-range forces bring the transition very close to the prewetting critical point, leading to an adsorption behaviour closely reminiscent of short-range tricritical wetting, observed experimentally for alkane chain length between 9.6 and 10. Finally, for undecane/methanol the transition is clearly of first order. First-order wetting is also seen in the experiment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا