ﻻ يوجد ملخص باللغة العربية
In this work, the electronic and optical properties of a Nitrogen (N) or a Boron (B) doped BeO monolayer are investigated in the framework of density functional theory. It is known that the band gap of a BeO monolayer is large leading to poor material for optoelectronic devices in a wide range of energy. Using substitutional N or B dopant atoms, we find that the band gap can be tuned and the optical properties can be improved. In the N(B)-doped BeO monolayer, the Fermi energy slightly crosses the valence(conduction) band forming a degenerate semiconductor structure. The N or B atoms thus generate new states around the Fermi energy increasing the optical conductivity in the visible light region. Furthermore, the influences of dopant atoms on the electronic structure, the stability, the dispersion energy, the density of states, and optical properties such as the plasmon frequency, the excitation spectra, the dielectric functions, the static dielectric constant, and the electron energy loss function are discussed for different directions of polarizations for the incoming electric field.
We study the effect of boron (B) and Phosphorous (P) co-doping on electronic and optical properties of graphitic carbon nitride (g-C$_3$N$_4$ or GCN) monolayer using density functional simulations. The energy band structure indicates that the incorpo
In a latest experimental advance, graphene-like and insulating BeO monolayer was successfully grown over silver surface by molecular beam epitaxy (ACS Nano 15(2021), 2497). Inspired by this accomplishment, in this work we conduct first-principles bas
In this study we present a theoretical investigation of structural, electronic and mechanical properties of pentagonal monolayers of carbon (p-graphene), boron nitride (p-B$_{2}$N$_{4}$ and p-B$_{4}$N$_{2}$) and silver azide (p-AgN$_{3}$) by performi
We simulate the optical and electrical responses in gallium-doped graphene. Using density functional theory with a local density approximation, we simlutate the electronic band structure and show the effects of impurity doping (0-3.91%) in graphene o
Due to their characteristic geometry, TiO$_2$ nanotubes (TNTs), suitably doped by metal-substitution to enhance their photocatalytic properties, have a high potential for applications such as clean fuel production. In this context, we present a detai