ترغب بنشر مسار تعليمي؟ اضغط هنا

Dual representations of quasiconvex compositions with applications to systemic risk

412   0   0.0 ( 0 )
 نشر من قبل \\c{C}a\\u{g}{\\i}n Ararat
 تاريخ النشر 2021
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

Motivated by the problem of finding dual representations for quasiconvex systemic risk measures in financial mathematics, we study quasiconvex compositions in an abstract infinite-dimensional setting. We calculate an explicit formula for the penalty function of the composition in terms of the penalty functions of the ingredient functions. The proof makes use of a nonstandard minimax inequality (rather than equality as in the standard case) that is available in the literature. In the second part of the paper, we apply our results in concrete probabilistic settings for systemic risk measures, in particular, in the context of Eisenberg-Noe clearing model. We also provide novel economic interpretations of the dual representations in these settings.



قيم البحث

اقرأ أيضاً

We study a static portfolio optimization problem with two risk measures: a principle risk measure in the objective function and a secondary risk measure whose value is controlled in the constraints. This problem is of interest when it is necessary to consider the risk preferences of two parties, such as a portfolio manager and a regulator, at the same time. A special case of this problem where the risk measures are assumed to be coherent (positively homogeneous) is studied recently in a joint work of the author. The present paper extends the analysis to a more general setting by assuming that the two risk measures are only quasiconvex. First, we study the case where the principal risk measure is convex. We introduce a dual problem, show that there is zero duality gap between the portfolio optimization problem and the dual problem, and finally identify a condition under which the Lagrange multiplier associated to the dual problem at optimality gives an optimal portfolio. Next, we study the general case without the convexity assumption and show that an approximately optimal solution with prescribed optimality gap can be achieved by using the well-known bisection algorithm combined with a duality result that we prove.
In this paper, we introduce the rich classes of conditional distortion (CoD) risk measures and distortion risk contribution ($Delta$CoD) measures as measures of systemic risk and analyze their properties and representations. The classes include the w ell-known conditional Value-at-Risk, conditional Expected Shortfall, and risk contribution measures in terms of the VaR and ES as special cases. Sufficient conditions are presented for two random vectors to be ordered by the proposed CoD-risk measures and distortion risk contribution measures. These conditions are expressed using the conventional stochastic dominance, increasing convex/concave, dispersive, and excess wealth orders of the marginals and canonical positive/negative stochastic dependence notions. Numerical examples are provided to illustrate our theoretical findings. This paper is the second in a triplet of papers on systemic risk by the same authors. In cite{DLZorder2018a}, we introduce and analyze some new stochastic orders related to systemic risk. In a third (forthcoming) paper, we attribute systemic risk to the different participants in a given risky environment.
A growing body of studies on systemic risk in financial markets has emphasized the key importance of taking into consideration the complex interconnections among financial institutions. Much effort has been put in modeling the contagion dynamics of f inancial shocks, and to assess the resilience of specific financial markets - either using real network data, reconstruction techniques or simple toy networks. Here we address the more general problem of how shock propagation dynamics depends on the topological details of the underlying network. To this end we consider different realistic network topologies, all consistent with balance sheets information obtained from real data on financial institutions. In particular, we consider networks of varying density and with different block structures, and diversify as well in the details of the shock propagation dynamics. We confirm that the systemic risk properties of a financial network are extremely sensitive to its network features. Our results can aid in the design of regulatory policies to improve the robustness of financial markets.
Systemic risk arises as a multi-layer network phenomenon. Layers represent direct financial exposures of various types, including interbank liabilities, derivative- or foreign exchange exposures. Another network layer of systemic risk emerges through common asset holdings of financial institutions. Strongly overlapping portfolios lead to similar exposures that are caused by price movements of the underlying financial assets. Based on the knowledge of portfolio holdings of financial agents we quantify systemic risk of overlapping portfolios. We present an optimization procedure, where we minimize the systemic risk in a given financial market by optimally rearranging overlapping portfolio networks, under the constraints that the expected returns and risks of the individual portfolios are unchanged. We explicitly demonstrate the power of the method on the overlapping portfolio network of sovereign exposure between major European banks by using data from the European Banking Authority stress test of 2016. We show that systemic-risk-efficient allocations are accessible by the optimization. In the case of sovereign exposure, systemic risk can be reduced by more than a factor of two, with- out any detrimental effects for the individual banks. These results are confirmed by a simple simulation of fire sales in the government bond market. In particular we show that the contagion probability is reduced dramatically in the optimized network.
108 - M. Andrecut 2017
We discuss the systemic risk implied by the interbank exposures reconstructed with the maximum entropy method. The maximum entropy method severely underestimates the risk of interbank contagion by assuming a fully connected network, while in reality the structure of the interbank network is sparsely connected. Here, we formulate an algorithm for sparse network reconstruction, and we show numerically that it provides a more reliable estimation of the systemic risk.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا