ﻻ يوجد ملخص باللغة العربية
We study infinite server queues driven by Cox processes in a fast oscillatory random environment. While exact performance analysis is difficult, we establish diffusion approximations to the (re-scaled) number-in-system process by proving functional central limit theorems (FCLTs) using a stochastic homogenization framework. This framework permits the establishment of quenched and annealed limits in a unified manner. At the quantitative level, we identity two parameter regimes, termed subcritical and supercritical indicating the relative dominance between the two underlying stochasticities driving our system: the randomness in the arrival intensity and that in the serivce times. We show that while quenched FCLTs can only be established in the subcritical regime, annealed FCLTs can be proved in both cases. Furthermore, the limiting diffusions in the annealed FCLTs display qualitatively different diffusivity properties in the two regimes, even though the stochastic primitives are identical. In particular, when the service time distribution is heavy-tailed, the diffusion is sub- and super-diffusive in the sub- and super-critical cases. The results illustrate intricate interactions between the underlying driving forces of our system.
In this paper, we consider a $G_t/G_t/infty$ infinite server queueing model in a random environment. More specifically, the arrival rate in our server is modeled as a highly fluctuating stochastic process, which arguably takes into account some small
Exponential single server queues with state dependent arrival and service rates are considered which evolve under influences of external environments. The transitions of the queues are influenced by the environments state and the movements of the env
Let $sigma(u)$, $uin mathbb{R}$ be an ergodic stationary Markov chain, taking a finite number of values $a_1,...,a_m$, and $b(u)=g(sigma(u))$, where $g$ is a bounded and measurable function. We consider the diffusion type process $$ dX^epsilon_t =
A Markovian single-server queue is studied in an interactive random environment. The arrival and service rates of the queue depend on the environment, while the transition dynamics of the random environment depends on the queue length. We consider in
We consider a processor sharing queue where the number of jobs served at any time is limited to $K$, with the excess jobs waiting in a buffer. We use random counting measures on the positive axis to model this system. The limit of this measure-valued