ﻻ يوجد ملخص باللغة العربية
We study the energy transfer in the linear system $$ begin{cases} ddot u+u+dot u=bdot v ddot v+v-epsilon dot v=-bdot u end{cases} $$ made by two coupled differential equations, the first one dissipative and the second one antidissipative. We see how the competition between the damping and the antidamping mechanisms affect the whole system, depending on the coupling parameter $b$.
We prove that a family of linear bounded evolution operators $({bf G}(t,s))_{tge sin I}$ can be associated, in the space of vector-valued bounded and continuous functions, to a class of systems of elliptic operators $bm{mathcal A}$ with unbounded coe
We obtain multiplicity results for a class of first-order superquadratic Hamiltonian systems and a class of indefinite superquadratic elliptic systems which lead to the study of strongly indefinite functionals. There is no assumption to the effect th
In this paper we consider successive iterations of the first-order differential operations in space ${bf R}^3.$
This note is devoted to the study of Hyt{o}nens extrapolation theorem of compactness on weighted Lebesgue spaces. Two criteria of compactness of linear operators in the two-weight setting are obtained. As applications, we obtain two-weight compactnes
Let $f$ be a transcendental meromorphic function, defined in the complex plane $mathbb{C}$. In this paper, we give a quantitative estimations of the characteristic function $T(r,f)$ in terms of the counting function of a homogeneous differential poly