ترغب بنشر مسار تعليمي؟ اضغط هنا

Splitting of elliptic flow in non-central relativistic heavy-ion collisions

378   0   0.0 ( 0 )
 نشر من قبل Zhengyu Chen
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We predict a new effect due to the presence of the global vorticity in non-central relativistic heavy-ion collisions, namely a splitting of the elliptic flow parameter $v_2$ at non-zero rapidity. The size of the splitting is proposed as a new observable that can be used to constrain the initial vortical configuration of the produced QCD matter in experiments. The new findings are demonstrated by numerical calculations employing the parton cascade model, Boltzmann Approach of MultiParton Scatterings (BAMPS), for non-central Au + Au collisions at $sqrt{s_{NN}} = 200 GeV$.

قيم البحث

اقرأ أيضاً

Direct photons have been proposed as a promising signature for the quark-gluon plasma (QGP) formation in relativistic heavy-ion collisions. Recently WA98 presented the first data on direct photons in Pb+Pb-collisions at SPS. At the same time RHIC sta rted with its experimental program. The discovery of the QGP in these experiments relies on a comparison of data with theoretical predictions for QGP signals. In the case of direct photons new results for the production rates of thermal photons from the QGP and a hot hadron gas as well as for prompt photons from initial hard parton scatterings have been proposed recently. Based on these rates a variety of different hydrodynamic models, describing the space-time evolution of the fireball, have been adopted for calculating the direct photon spectra. The results have been compared to the WA98 data and predictions for RHIC and LHC have been made. So far the conclusions of the various models are controversial. The aim of the present review is to provide a comprehensive and up-to-date survey and status report on the experimental and theoretical aspects of direct photons in relativistic heavy-ion collisions.
282 - Peng Yang , Lin Li , Yu Zhou 2021
Radial flow can be directly extracted from the azimuthal distribution of mean transverse rapidity. We apply the event-plane method and the two-particle correlation method to estimate the anisotropic Fourier coefficient of the azimuthal distribution o f mean transverse rapidity. Using the event sample generated by a multiphase transport model with string melting, we show that both methods are effective. For the two-particle correlation method to be reliable, the mean number of particles in an azimuthal bin must be above a certain threshold. Using these two methods, anisotropic radial flow can be estimated in a model-independent way in relativistic heavy-ion collisions.
123 - Chao Zhang , Zi-Wei Lin 2021
Recently the splitting of elliptic flow $v_2$ at finite rapidities has been proposed as a result of the global vorticity in non-central relativistic heavy ion collisions. Using a multi-phase transport model that automatically includes the vorticity f ield and flow fluctuations, we confirm the left-right (i.e., on opposite sides of the impact parameter axis) splitting of the elliptic flow at finite rapidities. However, we find that this $v_2$ splitting is a result of the non-zero directed flow $v_1$ at finite rapidities, with the splitting magnitude $approx 8v_1/3pi$. As a result, the $v_2$ splitting vanishes at zero transverse momentum ($p_{rm T}$), and its magnitude and sign may have non-trivial dependences on $p_{rm T}$, centrality, collision energy, and hadron species. Since the left-right $v_2$ splitting is a combined effect of $v_1$ and $v_2$, it will benefit studies of the three-dimensional structure and dynamics of the dense matter.
369 - Jian-Hua Gao 2021
We discuss the helicity polarization which can be locally induced from both vorticity and helicity charge in non-central heavy ion collisions. Helicity charge redistribution can be generated in viscous fluid and contributes to azimuthal asymmetry of the polarization along global angular momentum or beam momentum. We also discuss on detecting the initial net helicity charge from topological charge fluctuation or initial color longitudinal field by the helicity polarization correlation of two hyperons and the helicity alignment of vector mesons in central heavy ion collisions.
We study the dynamics of open charm production and the dilepton radiation of the semi-leptonic decays of correlated $Dbar D$ pairs versus the quark-gluon plasma (QGP) radiation and hadronic sources in relativistic heavy-ion collisions. Our study is b ased on the Parton-Hadron-String Dynamics (PHSD) transport approach employing a non-perturbative QCD description of the strongly interacting quark-gluon plasma (sQGP) in terms of dynamical quasiparticles and the EoS based on lattice QCD. We compare the PHSD results for charm observables with the calculations from BAMPS (Boltzmann Approach to Multi-Parton Scatterings) which is based on perturbative QCD with massless partons and interaction cross sections calculated in leading order of the QCD coupling. We compare the $p_T$ dependence of the ratio $R_{AA}$ of $D$-mesons in $A+A$ over $p+p$ collisions scaled by the number of binary collisions $N_{bin}$ as well as the elliptic flow $v_2$ of $D$-mesons calculated within the PHSD and BAMPS at LHC energies. In other study, based on the PHSD calculations we find that the dileptons from correlated $D-$meson semi-leptonic decays dominate the thermal radiation from the QGP in central Pb+Pb collisions at the intermediate masses ($1.2 < M < 3$ GeV) for higher invariant energies However, for invariant energies $sqrt{s_{NN}} < 40$ GeV the QGP radiation overshines the contribution from $D,{bar D}$ decays such that one should observe a rather clear signal from the partonic dilepton radiation. This finding provides promising perspectives to measure the QGP radiation in the dilepton experiments at RHIC BES and the future FAIR/NICA facilities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا