ترغب بنشر مسار تعليمي؟ اضغط هنا

Congruences for Hasse--Witt matrices and solutions of $p$-adic KZ equations

106   0   0.0 ( 0 )
 نشر من قبل Svetlana Varchenko
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove general Dwork-type congruences for Hasse--Witt matrices attached to tuples of Laurent polynomials. We apply this result to establishing arithmetic and $p$-adic analytic properties of functions originating from polynomial solutions modulo $p^s$ of Knizhnik--Zamolodchikov (KZ) equations, solutions which come as coefficients of master polynomials and whose coefficients are integers. As an application we show that the $p$-adic KZ connection associated with the family of hyperelliptic curves $y^2=(t-z_1)dots (t-z_{2g+1})$ has an invariant subbundle of rank $g$. Notice that the corresponding complex KZ connection has no nontrivial subbundles due to the irreducibility of its monodromy representation.



قيم البحث

اقرأ أيضاً

We consider the KZ differential equations over $mathbb C$ in the case, when the hypergeometric solutions are one-dimensional integrals. We also consider the same differential equations over a finite field $mathbb F_p$. We study the space of polynomia l solutions of these differential equations over $mathbb F_p$, constructed in a previous work by V. Schechtman and the second author. Using Hasse-Witt matrices we identify the space of these polynomial solutions over $mathbb F_p$ with the space dual to a certain subspace of regular differentials on an associated curve. We also relate these polynomial solutions over $mathbb F_p$ and the hypergeometric solutions over $mathbb C$.
We prove general Dwork-type congruences for constant terms attached to tuples of Laurent polynomials. We apply this result to establishing arithmetic and $p$-adic analytic properties of functions originating from polynomial solutions modulo $p^s$ of hypergeometric and KZ equations, solutions which come as coefficients of master polynomials and whose coefficients are integers. As an application we show that the simplest example of a $p$-adic KZ connection has an invariant line subbundle while its complex analog has no nontrivial subbundles due to the irreducibility of the monodromy group.
We generalise Dworks theory of $p$-adic formal congruences from the univariate to a multi-variate setting. We apply our results to prove integrality assertions on the Taylor coefficients of (multi-variable) mirror maps. More precisely, with $mathbf z =(z_1,z_2,...,z_d)$, we show that the Taylor coefficients of the multi-variable series $q(mathbf z)=z_iexp(G(mathbf z)/F(mathbf z))$ are integers, where $F(mathbf z)$ and $G(mathbf z)+log(z_i) F(mathbf z)$, $i=1,2,...,d$, are specific solutions of certain GKZ systems. This result implies the integrality of the Taylor coefficients of numerous families of multi-variable mirror maps of Calabi-Yau complete intersections in weighted projective spaces, as well as of many one-variable mirror maps in the Tables of Calabi-Yau equations [arXiv:math/0507430] of Almkvist, van Enckevort, van Straten and Zudilin. In particular, our results prove a conjecture of Batyrev and van Straten in [Comm. Math. Phys. 168 (1995), 493-533] on the integrality of the Taylor coefficients of canonical coordinates for a large family of such coordinates in several variables.
We present an efficient algorithm to compute the Hasse-Witt matrix of a hyperelliptic curve C/Q modulo all primes of good reduction up to a given bound N, based on the average polynomial-time algorithm recently introduced by Harvey. An implementation for hyperelliptic curves of genus 2 and 3 is more than an order of magnitude faster than alternative methods for N = 2^26.
We present an algorithm that computes the Hasse-Witt matrix of given hyperelliptic curve over Q at all primes of good reduction up to a given bound N. It is simpler and faster than the previous algorithm developed by the authors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا