ترغب بنشر مسار تعليمي؟ اضغط هنا

Convergence of position-dependent MALA with application to conditional simulation in GLMMs

197   0   0.0 ( 0 )
 نشر من قبل Vivekananda Roy
 تاريخ النشر 2021
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

We establish verifiable conditions under which Metropolis Hastings (MH) algorithms with position-dependent proposal covariance matrix will or will not have geometric rate of convergence. Some of the diffusions based MH algorithms like Metropolis adjusted Langevin algorithms (MALA) and Pre-conditioned MALA (PCMALA) have position independent proposal variance. Whereas, for other variants of MALA like manifold MALA (MMALA), the proposal covariance matrix changes in every iteration. Thus, we provide conditions for geometric ergodicity of different variations of Langevin algorithms. These conditions are verified in the context of conditional simulation from the two most popular generalized linear mixed models (GLMMs), namely the binomial GLMM with logit link and the Poisson GLMM with log link. Empirical comparison in the framework of some spatial GLMMs shows that computationally less expensive PCMALA with an appropriately chosen pre-conditioning matrix may outperform MMALA.



قيم البحث

اقرأ أيضاً

106 - James Scott , Axel Gandy 2018
This paper introduces new efficient algorithms for two problems: sampling conditional on vertex degrees in unweighted graphs, and sampling conditional on vertex strengths in weighted graphs. The algorithms can sample conditional on the presence or ab sence of an arbitrary number of edges. The resulting conditional distributions provide the basis for exact tests. Existing samplers based on MCMC or sequential importance sampling are generally not scalable; their efficiency degrades in sparse graphs. MCMC methods usually require explicit computation of a Markov basis to navigate the complex state space; this is computationally intensive even for small graphs. We use state-dependent kernel selection to develop new MCMC samplers. These do not require a Markov basis, and are efficient both in sparse and dense graphs. The key idea is to intelligently select a Markov kernel on the basis of the current state of the chain. We apply our methods to testing hypotheses on a real network and contingency table. The algorithms appear orders of magnitude more efficient than existing methods in the test cases considered.
We consider perfect simulation algorithms for locally stable point processes based on dominated coupling from the past, and apply these methods in two different contexts. A new version of the algorithm is developed which is feasible for processes whi ch are neither purely attractive nor purely repulsive. Such processes include multiscale area-interaction processes, which are capable of modelling point patterns whose clustering structure varies across scales. The other topic considered is nonparametric regression using wavelets, where we use a suitable area-interaction process on the discrete space of indices of wavelet coefficients to model the notion that if one wavelet coefficient is non-zero then it is more likely that neighbouring coefficients will be also. A method based on perfect simulation within this model shows promising results compared to the standard methods which threshold coefficients independently.
This paper considers the modeling of zero-inflated circular measurements concerning real case studies from medical sciences. Circular-circular regression models have been discussed in the statistical literature and illustrated with various real-life applications. However, there are no models to deal with zero-inflated response as well as a covariate simultaneously. The Mobius transformation based two-stage circular-circular regression model is proposed, and the Bayesian estimation of the model parameters is suggested using the MCMC algorithm. Simulation results show the superiority of the performance of the proposed method over the existing competitors. The method is applied to analyse real datasets on astigmatism due to cataract surgery and abnormal gait related to orthopaedic impairment. The methodology proposed can assist in efficient decision making during treatment or post-operative care.
In this paper, we study the asymptotic variance of sample path averages for inhomogeneous Markov chains that evolve alternatingly according to two different $pi$-reversible Markov transition kernels $P$ and $Q$. More specifically, our main result all ows us to compare directly the asymptotic variances of two inhomogeneous Markov chains associated with different kernels $P_i$ and $Q_i$, $iin{0,1}$, as soon as the kernels of each pair $(P_0,P_1)$ and $(Q_0,Q_1)$ can be ordered in the sense of lag-one autocovariance. As an important application, we use this result for comparing different data-augmentation-type Metropolis-Hastings algorithms. In particular, we compare some pseudo-marginal algorithms and propose a novel exact algorithm, referred to as the random refreshment algorithm, which is more efficient, in terms of asymptotic variance, than the Grouped Independence Metropolis-Hastings algorithm and has a computational complexity that does not exceed that of the Monte Carlo Within Metropolis algorithm.
We introduce a new method of Bayesian wavelet shrinkage for reconstructing a signal when we observe a noisy version. Rather than making the common assumption that the wavelet coefficients of the signal are independent, we allow for the possibility th at they are locally correlated in both location (time) and scale (frequency). This leads us to a prior structure which is analytically intractable, but it is possible to draw independent samples from a close approximation to the posterior distribution by an approach based on Coupling From The Past.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا