ترغب بنشر مسار تعليمي؟ اضغط هنا

TweetBLM: A Hate Speech Dataset and Analysis of Black Lives Matter-related Microblogs on Twitter

63   0   0.0 ( 0 )
 نشر من قبل Sumit Kumar
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In the past few years, there has been a significant rise in toxic and hateful content on various social media platforms. Recently Black Lives Matter movement came into the picture, causing an avalanche of user generated responses on the internet. In this paper, we have proposed a Black Lives Matter related tweet hate speech dataset TweetBLM. Our dataset comprises 9165 manually annotated tweets that target the Black Lives Matter movement. We annotated the tweets into two classes, i.e., HATE and NONHATE based on their content related to racism erupted from the movement for the black community. In this work, we also generated useful statistical insights on our dataset and performed a systematic analysis of various machine learning models such as Random Forest, CNN, LSTM, BiLSTM, Fasttext, BERTbase, and BERTlarge for the classification task on our dataset. Through our work, we aim at contributing to the substantial efforts of the research community for the identification and mitigation of hate speech on the internet. The dataset is publicly available.



قيم البحث

اقرأ أيضاً

Hate speech detection has become a hot topic in recent years due to the exponential growth of offensive language in social media. It has proven that, state-of-the-art hate speech classifiers are efficient only when tested on the data with the same fe ature distribution as training data. As a consequence, model architecture plays the second role to improve the current results. In such a diverse data distribution relying on low level features is the main cause of deficiency due to natural bias in data. Thats why we need to use high level features to avoid a biased judgement. In this paper, we statistically analyze the Perspective Scores and their impact on hate speech detection. We show that, different hate speech datasets are very similar when it comes to extract their Perspective Scores. Eventually, we prove that, over-sampling the Perspective Scores of a hate speech dataset can significantly improve the generalization performance when it comes to be tested on other hate speech datasets.
The 2020 US Elections have been, more than ever before, characterized by social media campaigns and mutual accusations. We investigate in this paper if this manifests also in online communication of the supporters of the candidates Biden and Trump, b y uttering hateful and offensive communication. We formulate an annotation task, in which we join the tasks of hateful/offensive speech detection and stance detection, and annotate 3000 Tweets from the campaign period, if they express a particular stance towards a candidate. Next to the established classes of favorable and against, we add mixed and neutral stances and also annotate if a candidate is mentioned without an opinion expression. Further, we annotate if the tweet is written in an offensive style. This enables us to analyze if supporters of Joe Biden and the Democratic Party communicate differently than supporters of Donald Trump and the Republican Party. A BERT baseline classifier shows that the detection if somebody is a supporter of a candidate can be performed with high quality (.89 F1 for Trump and .91 F1 for Biden), while the detection that somebody expresses to be against a candidate is more challenging (.79 F1 and .64 F1, respectively). The automatic detection of hate/offensive speech remains challenging (with .53 F1). Our corpus is publicly available and constitutes a novel resource for computational modelling of offensive language under consideration of stances.
Islamophobic hate speech on social media inflicts considerable harm on both targeted individuals and wider society, and also risks reputational damage for the host platforms. Accordingly, there is a pressing need for robust tools to detect and classi fy Islamophobic hate speech at scale. Previous research has largely approached the detection of Islamophobic hate speech on social media as a binary task. However, the varied nature of Islamophobia means that this is often inappropriate for both theoretically-informed social science and effectively monitoring social media. Drawing on in-depth conceptual work we build a multi-class classifier which distinguishes between non-Islamophobic, weak Islamophobic and strong Islamophobic content. Accuracy is 77.6% and balanced accuracy is 83%. We apply the classifier to a dataset of 109,488 tweets produced by far right Twitter accounts during 2017. Whilst most tweets are not Islamophobic, weak Islamophobia is considerably more prevalent (36,963 tweets) than strong (14,895 tweets). Our main input feature is a gloVe word embeddings model trained on a newly collected corpus of 140 million tweets. It outperforms a generic word embeddings model by 5.9 percentage points, demonstrating the importan4ce of context. Unexpectedly, we also find that a one-against-one multi class SVM outperforms a deep learning algorithm.
With growing role of social media in shaping public opinions and beliefs across the world, there has been an increased attention to identify and counter the problem of hate speech on social media. Hate speech on online spaces has serious manifestatio ns, including social polarization and hate crimes. While prior works have proposed automated techniques to detect hate speech online, these techniques primarily fail to look beyond the textual content. Moreover, few attempts have been made to focus on the aspects of interpretability of such models given the social and legal implications of incorrect predictions. In this work, we propose a deep neural multi-modal model that can: (a) detect hate speech by effectively capturing the semantics of the text along with socio-cultural context in which a particular hate expression is made, and (b) provide interpretable insights into decisions of our model. By performing a thorough evaluation of different modeling techniques, we demonstrate that our model is able to outperform the existing state-of-the-art hate speech classification approaches. Finally, we show the importance of social and cultural context features towards unearthing clusters associated with different categories of hate.
The societal issue of digital hostility has previously attracted a lot of attention. The topic counts an ample body of literature, yet remains prominent and challenging as ever due to its subjective nature. We posit that a better understanding of thi s problem will require the use of causal inference frameworks. This survey summarises the relevant research that revolves around estimations of causal effects related to online hate speech. Initially, we provide an argumentation as to why re-establishing the exploration of hate speech in causal terms is of the essence. Following that, we give an overview of the leading studies classified with respect to the direction of their outcomes, as well as an outline of all related research, and a summary of open research problems that can influence future work on the topic.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا