ترغب بنشر مسار تعليمي؟ اضغط هنا

The extension of the Fundamental Metallicity Relation beyond the BPT star-forming sequence: evidence for both gas accretion and starvation

79   0   0.0 ( 0 )
 نشر من قبل Nimisha Kumari
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The fundamental metallicity relation (FMR) of galaxies is a 3D relation between the gas-phase metallicity, stellar mass and star-formation rate (SFR). It has been studied so far only for galaxies identified as star-forming (SF) on the BPT diagrams (BPT-SF), but not for galaxies with LI(N)ER/AGN classification (BPT-non-SF), mainly due to the lack of diagnostics for estimating their gas-phase metallicities in the latter cases. We extend the FMR to BPT-non-SF galaxies. To this end, we exploit the recent nebular line empirical calibrations derived specifically for galaxies classified as non-SF in the BPT diagrams. Moreover, we study an alternative representation of the FMR where we consider the offsets in metallicity and SFR with respect to Main Sequence (MS) galaxies. We find that galaxies with SFR higher than the MS are more metal-poor than their counterparts on the MS, which is interpreted in terms of gas accretion, boosting star formation and diluting the metallicity. Low-mass galaxies below the MS (i.e. towards quiescence) have metallicities higher than their MS counterparts, which is interpreted in terms of starvation, (i.e. suppression of fresh gas supply) hampering star formation and reducing the dilution effect, hence resulting in a higher level of internal chemical enrichment. Massive galaxies below the MS have gas metallicity much closer to their MS counterparts and much lower than expected from their stellar metallicities; this result suggests a scenario where massive nearly-quiescent galaxies with LI(N)ER-like nebular emission have recently accreted gas from the circum/intergalactic medium.

قيم البحث

اقرأ أيضاً

Star-forming galaxies display a close relation among stellar mass, metallicity and star-formation rate (or molecular-gas mass). This is known as the fundamental metallicity relation (FMR) (or molecular-gas FMR), and it has a profound implication on m odels of galaxy evolution. However, there still remains a significant residual scatter around the FMR. We show here that a fourth parameter, the surface density of stellar mass, reduces the dispersion around the molecular-gas FMR. In a principal component analysis of 29 physical parameters of 41,338 star-forming galaxies, the surface density of stellar mass is found to be the fourth most important parameter. The new four-dimensional (4D) fundamental relation forms a tighter hypersurface that reduces the metallicity dispersion to 50% of that of the molecular-gas FMR. We suggest that future analyses and models of galaxy evolution should consider the FMR in a 4D space that includes surface density. The dilution time scale of gas inflow and the star-formation efficiency could explain the observational dependence on surface density of stellar mass. AKARI is expected to play an important role in shedding light on the infrared properties of the new 4D FMR.
Star-forming galaxies display a close relation among stellar mass, metallicity and star-formation rate (or molecular-gas mass). This is known as the fundamental metallicity relation (FMR) (or molecular-gas FMR), and it has a profound implication on m odels of galaxy evolution. However, there still remains a significant residual scatter around the FMR. We show here that a fourth parameter, the surface density of stellar mass, reduces the dispersion around the molecular-gas FMR. In a principal component analysis of 29 physical parameters of 41,338 star-forming galaxies, the surface density of stellar mass is found to be the fourth most important parameter. The new four-dimensional fundamental relation forms a tighter hypersurface that reduces the metallicity dispersion to 50% of that of the molecular-gas FMR. We suggest that future analyses and models of galaxy evolution should consider the FMR in a four-dimensional space that includes surface density. The dilution time scale of gas inflow and the star-formation efficiency could explain the observational dependence on surface density of stellar mass.
While all models for the evolution of galaxies require the accretion of gas to sustain their growth via on-going star formation, it has proven difficult to directly detect this inflowing material. In this paper we use data of nearby star-forming gala xies in the SDSS IV Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey to search for evidence of accretion imprinted in the chemical composition of the interstellar medium. We measure both the O/H and N/O abundance ratios in regions previously identified as having anomalously low values of O/H. We show that the unusual locations of these regions in the N/O vs. O/H plane indicate that they have been created through the mixing of disk gas having higher metallicity with accreted gas having lower metallicity. Taken together with previous analysis on these anomalously low-metallicity regions, these results imply that accretion of metal-poor gas can probably sustain star formation in present-day late-type galaxies.
68 - A. Obreja 2014
Using cosmological galaxy simulations from the MaGICC project, we study the evolution of the stellar masses, star formation rates and gas phase abundances of star forming galaxies. We derive the stellar masses and star formation rates using observati onal relations based on spectral energy distributions by applying the new radiative transfer code GRASIL-3D to our simulated galaxies. The simulations match well the evolution of the stellar mass-halo mass relation, have a star forming main sequence that maintains a constant slope out to redshift z $sim$ 2, and populate projections of the stellar mass - star formation - metallicity plane, similar to observed star forming disc galaxies. We discuss small differences between these projections in observational data and in simulations, and the possible causes for the discrepancies. The light-weighted stellar masses are in good agreement with the simulation values, the differences between the two varying between 0.06 dex and 0.20 dex. We also find a good agreement between the star formation rate tracer and the true (time-averaged) simulation star formation rates. Regardless if we use mass- or light-weighted quantities, our simulations indicate that bursty star formation cycles can account for the scatter in the star forming main sequence.
422 - Paul Torrey 2017
The fundamental metallicity relation (FMR) is a postulated correlation between galaxy stellar mass, star formation rate (SFR), and gas-phase metallicity. At its core, this relation posits that offsets from the mass-metallicity relation (MZR) at a fix ed stellar mass are correlated with galactic SFR. In this Letter, we quantify the timescale with which galactic SFRs and metallicities evolve using hydrodynamical simulations. We find that Illustris and IllustrisTNG predict that galaxy offsets from the star formation main sequence and MZR evolve over similar timescales, are often anti-correlated in their evolution, evolve with the halo dynamical time, and produce a pronounced FMR. In fact, for a FMR to exist, the metallicity and SFR must evolve in an anti-correlated sense which requires that they evolve with similar time variability. In contrast to Illustris and IllustrisTNG, we speculate that the SFR and metallicity evolution tracks may become decoupled in galaxy formation models dominated by globally-bursty SFR histories, which could weaken the FMR residual correlation strength. This opens the possibility of discriminating between bursty and non-bursty feedback models based on the strength and persistence of the FMR -- especially at high redshift.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا