ترغب بنشر مسار تعليمي؟ اضغط هنا

The nascent milliquasar VT J154843.06+220812.6: tidal disruption event or extreme accretion-state change?

106   0   0.0 ( 0 )
 نشر من قبل Jean Somalwar
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present detailed multiwavelength follow up of a nuclear radio flare, VT J154843.06+220812.6, hereafter VT J1548. VT J1548 was selected as a ${sim}1$ mJy radio flare in 3 GHz observations from the VLA Sky Survey (VLASS). It is located in the nucleus of a low mass ($log M_{rm BH}/M_odot sim6$) host galaxy with weak or no past AGN activity. VT J1548 is associated with a slow rising (multiple year), bright mid IR flare in the WISE survey, peaking at ${sim}10%L_{rm edd.}$. No associated optical transient is detected, although we cannot rule out a short, early optical flare given the limited data available. Constant late time (${sim}3$ years post-flare) X-ray emission is detected at ${sim}10^{42}$ erg s$^{-1}$. The radio SED is consistent with synchrotron emission from an outflow incident on an asymmetric medium. A follow-up, optical spectrum shows transient, bright, high-ionization coronal line emission ($[{rm Fe,X}],lambda 6375,[{rm Fe,XI}],lambda 7894,[{rm S,XII}],lambda 7612$). Transient broad H$alpha$ is also detected but without corresponding broad H$beta$ emission, suggesting high nuclear extinction. We interpret this event as either a tidal disruption event or an extreme flare of an active galactic nucleus, in both cases obscured by a dusty torus. Although these individual properties have been observed in previous transients, the combination is unprecedented. This event highlights the importance of searches across all wave bands for assembling a sample of nuclear flares that spans the range of observable properties and possible triggers.



قيم البحث

اقرأ أيضاً

Following a tidal disruption event (TDE), the accretion rate can evolve from quiescent to near-Eddington levels and back over months - years timescales. This provides a unique opportunity to study the formation and evolution of the accretion flow aro und supermassive black holes (SMBHs). We present two years of multi-wavelength monitoring observations of the TDE AT2018fyk at X-ray, UV, optical and radio wavelengths. We identify three distinct accretion states and two state transitions between them. These appear remarkably similar to the behaviour of stellar-mass black holes in outburst. The X-ray spectral properties show a transition from a soft (thermal-dominated) to a hard (power-law dominated) spectral state around L$_{rm bol} sim $few $ times 10^{-2}$ L$_{rm Edd}$, and the strengthening of the corona over time $sim$100--200 days after the UV/optical peak. Contemporaneously, the spectral energy distribution (in particular, the UV-to-X-ray spectral slope $alpha_{ox}$) shows a pronounced softening as the outburst progresses. The X-ray timing properties also show a marked change, initially dominated by variability at long ($>$day) timescales while a high frequency ($sim$10$^{-3}$ Hz) component emerges after the transition into the hard state. At late times ($sim$500 days after peak), a second accretion state transition occurs, from the hard into the quiescent state, as identified by the sudden collapse of the bolometric (X-ray+UV) emission to levels below 10$^{-3.4}$ L$_{rm Edd}$. Our findings illustrate that TDEs can be used to study the scale (in)variance of accretion processes in individual SMBHs. Consequently, they provide a new avenue to study accretion states over seven orders of magnitude in black hole mass, removing limitations inherent to commonly used ensemble studies.
112 - C.S. Kochanek 2016
We survey the properties of stars destroyed in TDEs as a function of BH mass, stellar mass and evolutionary state, star formation history and redshift. For Mbh<10^7Msun, the typical TDE is due to a M*~0.3Msun M-dwarf, although the mass function is re latively flat for $M*<Msun. The contribution from older main sequence stars and sub-giants is small but not negligible. From Mbh~10^7.5-10^8.5Msun, the balance rapidly shifts to higher mass stars and a larger contribution from evolved stars, and is ultimately dominated by evolved stars at higher BH masses. The star formation history has little effect until the rates are dominated by evolved stars. TDE rates should decline very rapidly towards higher redshifts. The volumetric rate of TDEs is very high because the BH mass function diverges for low masses. However, any emission mechanism which is largely Eddington-limited for low BH masses suppresses this divergence in any observed sample and leads to TDE samples dominated by Mbh~10^6.0-10^7.5Msun BHs with roughly Eddington peak accretion rates. The typical fall back time is relatively long, with 16% having Tfb<10^(-1) years (37 days), and 84% having longer time scales. Many residual rate discrepancies can be explained if surveys are biased against TDEs with these longer Tfb, which seems very plausible if Tfb has any relation to the transient rise time. For almost any BH mass function, systematic searches for fainter, faster time scale TDEs in smaller galaxies, and longer time scale TDEs in more massive galaxies are likely to be rewarded.
We construct a time-dependent relativistic accretion model for tidal disruption events (TDEs) with an $alpha-$viscosity and the pressure dominated by gas pressure. We also include the mass fallback rate $dot{M}_f$ for both full and partial disruption TDEs, and assume that the infalling debris forms a seed disc in time $t_c$, which evolves due to the mass addition from the infalling debris and the mass loss via accretion onto the black hole. Besides, we derive an explicit form for the disc height that depends on the angular momentum parameter in the disc. We show that the surface density of the disc increases at an initial time due to mass addition, and then decreases as the mass fallback rate decreases, which results in a decrease in the disc mass $M_{rm d}$ with a late-time evolution of $M_{rm d} propto t^{-1.05}$ and $M_{rm d} propto t^{-1.38}$ for full and partial disruption TDEs respectively, where $t$ is the time parameter. The bolometric luminosity $L$ shows a rise and decline that follows a power-law at late times given by $L propto t^{-1.8}$ and $L propto t^{-2.3}$ for full and partial disruption TDEs respectively. Our obtained luminosity declines faster than the luminosity inferred using $L propto dot{M}_f$. We also compute the light curves in various spectral bands.
75 - R.D. Saxton 2019
Aims. We investigate the evolution of X-ray selected tidal disruption events. Methods. New events are found in near-real time data from XMM-Newton slews and are monitored by multi-wavelength facilities. Results. In August 2016, X-ray emission was det ected from the galaxy XMMSL2 J144605.0+685735 (a.k.a. 2MASX 14460522+6857311), a factor 20 times higher than an upper limit from 25 years earlier. The X-ray flux was flat for ~100 days and then fell by a factor 100 over the following 500 days. The UV flux was stable for the first 400 days before fading by a magnitude, while the optical (U,B,V bands) have been roughly constant for 850 days. Optically, the galaxy appears to be quiescent, at a distance of $127pm{4}$ Mpc (z=$0.029pm{0.001}$) with a spectrum consisting of a young stellar population of age 1-5 Gyr, an older population and a total stellar mass of ~6 x $10^{9}$ solar masses. The bolometric luminosity peaked at L bol ~ $10^{43}$ ergs s$^{-1}$ with an X-ray spectrum that may be modeled by a power-law of $Gamma$~2.6 or Comptonisation of a low-temperature thermal component by thermal electrons. We consider a tidal disruption event to be the most likely cause of the flare. Radio emission was absent in this event down to < 10$mu$Jy, which limits the total energy of a hypothetical off-axis jet to E < 5 x $10^{50}$ ergs. The independent behaviour of the optical, UV and X-ray light curves challenges models where the UV emission is produced by reprocessing of thermal nuclear emission or by stream-stream collisions. We suggest that the observed UV emission may have been produced from a truncated accretion disk and the X-rays from Compton upscattering of these disk photons.
Multiwavelength flares from tidal disruption and accretion of stars can be used to find and study otherwise dormant massive black holes in galactic nuclei. Previous well-monitored candidate flares are short-lived, with most emission confined to withi n ~1 year. Here we report the discovery of a well observed super-long (>11 years) luminous soft X-ray flare from the nuclear region of a dwarf starburst galaxy. After an apparently fast rise within ~4 months a decade ago, the X-ray luminosity, though showing a weak trend of decay, has been persistently high at around the Eddington limit (when the radiation pressure balances the gravitational force). The X-ray spectra are generally soft (steeply declining towards higher energies) and can be described with Comptonized emission from an optically thick low-temperature corona, a super-Eddington accretion signature often observed in accreting stellar-mass black holes. Dramatic spectral softening was also caught in one recent observation, implying either a temporary transition from the super-Eddington accretion state to the standard thermal state or the presence of a transient highly blueshifted (~0.36c) warm absorber. All these properties in concert suggest a tidal disruption event of an unusually long super-Eddington accretion phase that has never been observed before.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا