ﻻ يوجد ملخص باللغة العربية
We present the results of nine simulations of radiatively-inefficient magnetically arrested disks (MADs) across different values of the black hole spin parameter $a_*$: $-0.9$, $-0.7$, $-0.5$, $-0.3$, 0, 0.3, 0.5, 0.7, and 0.9. Each simulation was run up to $t gtrsim 100,000,GM/c^3$ to ensure disk inflow equilibrium out to large radii. We find that the saturated magnetic flux level, and consequently also jet power, of MAD disks depends strongly on the black hole spin, confirming the results of Tchekhovskoy et al. (2012). Prograde disks saturate at a much higher relative magnetic flux and have more powerful jets than their retrograde counterparts. MADs with spinning black holes naturally launch jets with generalized parabolic profiles with width varying as a power of distance from the black hole. For distances up to $100GM/c^2$, the power-law index is $k approx 0.27-0.42$. There is a strong correlation between the disk-jet geometry and the dimensionless magnetic flux, resulting in prograde systems displaying thinner equatorial accretion flows near the black hole and wider jets, compared to retrograde systems. Prograde and retrograde MADs also exhibit different trends in disk variability: accretion rate variability increases with increasing spin for $a_*>0$ and remains almost constant for $a_*lesssim 0$, while magnetic flux variability shows the opposite trend. Jets in the MAD state remove more angular momentum from black holes than is accreted, effectively spinning down the black hole. If powerful jets from MAD systems in Nature are persistent, this loss of angular momentum will notably reduce the black hole spin over cosmic time.
The exact time-dependent solution is obtained for a magnetic field growth during a spherically symmetric accretion into a black hole (BH) with a Schwarzschild metric. Magnetic field is increasing with time, changing from the initially uniform into a
Recent observations of SgrA* by the GRAVITY instrument have astrometrically tracked infrared flares (IR) at distances of $sim 10$ gravitational radii ($r_g$). In this paper, we study a model for the flares based on 3D general relativistic magnetohydr
The radiative efficiency of super-Eddington accreting black holes (BHs) is explored for magnetically-arrested disks (MADs), where magnetic flux builds-up to saturation near the BH. Our three-dimensional general relativistic radiation magnetohydrodyna
We propose magnetically arrested disks (MADs) in quiescent black-hole (BH) binaries as the origin of the multiwavelength emission, and argue that this class of sources can dominate the cosmic-ray spectrum around the knee. X-ray luminosities of Galact
Several active galactic nuclei and microquasars are observed to eject plasmoids that move at relativistic speeds. We envisage the plasmoids as pre-existing current carrying magnetic flux ropes that were initially anchored in the accretion disk-corona