ﻻ يوجد ملخص باللغة العربية
Let $p$ be a prime number and $q=p^m$, with $m geq 1$ if $p eq 2,3$ and $m>1$ otherwise. Let $Omega$ be any non-trivial twist for the complex group algebra of $mathbf{PSL}_2(q)$ arising from a $2$-cocycle on an abelian subgroup of $mathbf{PSL}_2(q)$. We show that the twisted Hopf algebra $(mathbb{C} mathbf{PSL}_2(q))_{Omega}$ does not admit a Hopf order over any number ring. The same conclusion is proved for the Suzuki group $^2!B_2(q)$ and $mathbf{SL}_3(p)$ when the twist stems from an abelian $p$-subgroup. This supplies new families of complex semisimple (and simple) Hopf algebras that do not admit a Hopf order over any number ring. The strategy of the proof is formulated in a general framework that includes the finite simple groups of Lie type. As an application, we combine our results with two theorems of Thompson and Barry and Ward on minimal simple groups to establish that for any finite non-abelian simple group $G$ there is a twist $Omega$ for $mathbb{C} G$, arising from a $2$-cocycle on an abelian subgroup of $G$, such that $(mathbb{C} G)_{Omega}$ does not admit a Hopf order over any number ring. This partially answers in the negative a question posed by Meir and the second author.
We prove the non-existence of Hopf orders over number rings for two families of complex semisimple Hopf algebras. They are constructed as Drinfeld twists of group algebras for the following groups: $A_n$, the alternating group on $n$ elements, with $
We show that there is a family of complex semisimple Hopf algebras that do not admit a Hopf order over any number ring. They are Drinfeld twists of certain group algebras. The twist contains a scalar fraction which makes impossible the definability o
A Hopf algebra is co-Frobenius when it has a nonzero integral. It is proved that the composition length of the indecomposable injective comodules over a co-Frobenius Hopf algebra is bounded. As a consequence, the coradical filtration of a co-Frobeniu
Serious difficulties arise in the construction of chains of twists for symplectic Lie algebras. Applying the canonical chains of extended twists to deform the Hopf algebras U(sp(N)) one is forced to deal only with improper chains (induced by the U(sl
Let $p$ be an odd prime number and $K$ a number field having a primitive $p$-th root of unity $zeta.$ We prove that Nikshychs non-group theoretical Hopf algebra $H_p$, which is defined over $mathbb{Q}(zeta)$, admits a Hopf order over the ring of inte