ترغب بنشر مسار تعليمي؟ اضغط هنا

Non relativistic and ultra relativistic limits in 2d stochastic nonlinear damped Klein-Gordon equation

271   0   0.0 ( 0 )
 نشر من قبل Reika Fukuizumi
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the non relativistic and ultra relativistic limits in the two-dimensional nonlinear damped Klein-Gordon equation driven by a space-time white noise on the torus. In order to take the limits, it is crucial to clarify the parameter dependence in the estimates of solution. In this paper we present two methods to confirm this parameter dependence. One is the classical, simple energy method. Another is the method via Strichartz estimates.

قيم البحث

اقرأ أيضاً

250 - Raphael C^ote , Xu Yuan 2021
We consider the nonlinear damped Klein-Gordon equation [ partial_{tt}u+2alphapartial_{t}u-Delta u+u-|u|^{p-1}u=0 quad text{on} [0,infty)times mathbb{R}^N ] with $alpha>0$, $2 le Nle 5$ and energy subcritical exponents $p>2$. We study the behavior o f solutions for which it is supposed that only one nonlinear object appears asymptotically for large times, at least for a sequence of times. We first prove that the nonlinear object is necessarily a bound state. Next, we show that when the nonlinear object is a non-degenerate state or a degenerate excited state satisfying a simplicity condition, the convergence holds for all positive times, with an exponential or algebraic rate respectively. Last, we provide an example where the solution converges exactly at the rate $t^{-1}$ to the excited state.
We consider the nonlinear Klein-Gordon equation in $R^d$. We call multi-solitary waves a solution behaving at large time as a sum of boosted standing waves. Our main result is the existence of such multi-solitary waves, provided the composing boosted standing waves are stable. It is obtained by solving the equation backward in time around a sequence of approximate multi-solitary waves and showing convergence to a solution with the desired property. The main ingredients of the proof are finite speed of propagation, variational characterizations of the profiles, modulation theory and energy estimates.
This article resolves some errors in the paper Scattering threshold for the focusing nonlinear Klein-Gordon equation, Analysis & PDE 4 (2011) no. 3, 405-460. The errors are in the energy-critical cases in two and higher dimensions.
In this paper we prove the existence of vortices, namely standing waves with non null angular momentum, for the nonlinear Klein-Gordon equation in dimension $Ngeq 3$. We show with variational methods that the existence of these kind of solutions, tha t we have called emph{hylomorphic vortices}, depends on a suitable energy-charge ratio. Our variational approach turns out to be useful for numerical investigations as well. In particular, some results in dimension N=2 are reported, namely exemplificative vortex profiles by varying charge and angular momentum, together with relevant trends for vortex frequency and energy-charge ratio. The stability problem for hylomorphic vortices is also addressed. In the absence of conclusive analytical results, vortex evolution is numerically investigated: the obtained results suggest that, contrarily to solitons with null angular momentum, vortex are unstable.
In this paper we show that the Schrodinger-Newton equation for spherically symmetric gravitational fields can be derived in a WKB-like expansion in 1/c from the Einstein-Klein-Gordon and Einstein-Dirac system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا