ترغب بنشر مسار تعليمي؟ اضغط هنا

A Sato-Krichever Theory for Fractional Differential Operators

259   0   0.0 ( 0 )
 نشر من قبل William Casper
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Fractional differential (and difference) operators play a role in a number of diverse settings: integrable systems, mirror symmetry, Hurwitz numbers, the Bethe ansatz equations. We prove extensions of the three major results on algebras of commuting (ordinary) differentials operators to the setting of fractional differential operators: (1) the Burchnall-Chaundy theorem that a pair of commuting differential operators is algebraically dependent, (2) the classification of maximal commutative algebras of differential operators in terms of Satos theory and (3) the Krichever correspondence constructing those of rank 1 in an algebro-geometric way. Unlike the available proofs of the Burchnall-Chaundy theorem which use the action of one differential operator on the kernel of the other, our extension to the fractional case uses bounds on orders of fractional differential operators and growth of algebras, which also presents a new and much shorter proof of the original result. The second main theorem is achieved by developing a new tool of the spectral field of a point in Satos Grassmannian, which carries more information than the widely used notion of spectral curve of a KP solution. Our Krichever type correspondence for fractional differential operators is based on infinite jet bundles.



قيم البحث

اقرأ أيضاً

308 - Guo-cheng Wu 2010
Recently, fractional differential equations have been investigated via the famous variational iteration method. However, all the previous works avoid the term of fractional derivative and handle them as a restricted variation. In order to overcome su ch shortcomings, a fractional variational iteration method is proposed. The Lagrange multipliers can be identified explicitly based on fractional variational theory.
In this paper, we establish a local Lie theory for relative Rota-Baxter operators of weight $1$. First we recall the category of relative Rota-Baxter operators of weight $1$ on Lie algebras and construct a cohomology theory for them. We use the secon d cohomology group to study infinitesimal deformations of relative Rota-Baxter operators and modified $r$-matrices. Then we introduce a cohomology theory of relative Rota-Baxter operators on a Lie group. We construct the differentiation functor from the category of relative Rota-Baxter operators on Lie groups to that on Lie algebras, and extend it to the cohomology level by proving Van Est theorems between the two cohomology theories. Finally, we integrate a relative Rota-Baxter operator of weight 1 on a Lie algebra to a local relative Rota-Baxter operator on the corresponding Lie group, and show that the local integration and differentiation are adjoint to each other.
We present Bernstein-Sato identities for scalar-, spinor- and differential form-valued distribution kernels on Euclidean space associated to conformal symmetry breaking operators. The associated Bernstein-Sato operators lead to partially new formulae for conformal symmetry breaking differential operators on functions, spinors and differential forms.
99 - Shuai Hou , Yunhe Sheng 2021
In this paper, first we introduce the notion of a twisted Rota-Baxter operator on a 3-Lie algebra $g$ with a representation on $V$. We show that a twisted Rota-Baxter operator induces a 3-Lie algebra structure on $V$, which represents on $g$. By this fact, we define the cohomology of a twisted Rota-Baxter operator and study infinitesimal deformations of a twisted Rota-Baxter operator using the second cohomology group. Then we introduce the notion of an NS-3-Lie algebra, which produces a 3-Lie algebra with a representation on itself. We show that a twisted Rota-Baxter operator induces an NS-3-Lie algebra naturally. Thus NS-3-Lie algebras can be viewed as the underlying algebraic structures of twisted Rota-Baxter operators on 3-Lie algebras. Finally we show that a Nijenhuis operator on a 3-Lie algebra gives rise to a representation of the deformed 3-Lie algebra and a 2-cocycle. Consequently, the identity map will be a twisted Rota-Baxter operator on the deformed 3-Lie algebra. We also introduce the notion of a Reynolds operator on a 3-Lie algebra, which can serve as a special case of twisted Rota-Baxter operators on 3-Lie algebras.
262 - Ming Chen , Jiefeng Liu , Yao Ma 2021
Based on the differential graded Lie algebra controlling deformations of an $n$-Lie algebra with a representation (called an n-LieRep pair), we construct a Lie n-algebra, whose Maurer-Cartan elements characterize relative Rota-Baxter operators on n-L ieRep pairs. The notion of an n-pre-Lie algebra is introduced, which is the underlying algebraic structure of the relative Rota-Baxter operator. We give the cohomology of relative Rota-Baxter operators and study infinitesimal deformations and extensions of order m deformations to order m+1 deformations of relative Rota-Baxter operators through the cohomology groups of relative Rota-Baxter operators. Moreover, we build the relation between the cohomology groups of relative Rota-Baxter operators on n-LieRep pairs and those on (n+1)-LieRep pairs by certain linear functions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا