ﻻ يوجد ملخص باللغة العربية
One of the ways of achieving improved capacity in mobile cellular networks is via network densification. Even though densification increases the capacity of the network, it also leads to increased energy consumption which can be curbed by dynamically switching off some base stations (BSs) during periods of low traffic. However, dynamic cell switching has the challenge of spectrum under-utilizationas the spectrum originally occupied by the BSs that are turned off remains dormant. This dormant spectrum can be leased by the primary network (PN) operators, who hold the license, to the secondary network (SN) operators who cannot afford to purchase the spectrum license. Thus enabling the PN to gain additional revenue from spectrum leasing as well as from electricity cost savings due to reduced energy consumption. Therefore, in this work, we propose a cell switching and spectrum leasing framework based on simulated annealing (SA) algorithm to maximize the revenue of the PN while respecting the quality-of-service constraints. The performance evaluation reveals that the proposed method is very close to optimal exhaustive search method with a significant reduction in the computation complexity.
The evolution of conventional wireless communication networks to the fifth generation (5G) is driven by an explosive increase in the number of wireless mobile devices and services, as well as their demand for all-time and everywhere connectivity, hig
Ultra-dense deployments in 5G, the next generation of cellular networks, are an alternative to provide ultra-high throughput by bringing the users closer to the base stations. On the other hand, 5G deployments must not incur a large increase in energ
With the rapid development of railways, especially high-speed railways, there is an increasingly urgent demand for new wireless communication system for railways. Taking the mature 5G technology as an opportunity, 5G-railways (5G-R) have been widely
Heterogeneous wireless networks with small-cell deployments in licensed and unlicensed spectrum bands are a promising approach for expanding wireless connectivity and service. As a result, wireless service providers (SPs) are adding small-cells to au
5G is regarded as a revolutionary mobile network, which is expected to satisfy a vast number of novel services, ranging from remote health care to smart cities. However, heterogeneous Quality of Service (QoS) requirements of different services and li