ترغب بنشر مسار تعليمي؟ اضغط هنا

PAENet: A Progressive Attention-Enhanced Network for 3D to 2D Retinal Vessel Segmentation

121   0   0.0 ( 0 )
 نشر من قبل Zhuojie Wu
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

3D to 2D retinal vessel segmentation is a challenging problem in Optical Coherence Tomography Angiography (OCTA) images. Accurate retinal vessel segmentation is important for the diagnosis and prevention of ophthalmic diseases. However, making full use of the 3D data of OCTA volumes is a vital factor for obtaining satisfactory segmentation results. In this paper, we propose a Progressive Attention-Enhanced Network (PAENet) based on attention mechanisms to extract rich feature representation. Specifically, the framework consists of two main parts, the three-dimensional feature learning path and the two-dimensional segmentation path. In the three-dimensional feature learning path, we design a novel Adaptive Pooling Module (APM) and propose a new Quadruple Attention Module (QAM). The APM captures dependencies along the projection direction of volumes and learns a series of pooling coefficients for feature fusion, which efficiently reduces feature dimension. In addition, the QAM reweights the features by capturing four-group cross-dimension dependencies, which makes maximum use of 4D feature tensors. In the two-dimensional segmentation path, to acquire more detailed information, we propose a Feature Fusion Module (FFM) to inject 3D information into the 2D path. Meanwhile, we adopt the Polarized Self-Attention (PSA) block to model the semantic interdependencies in spatial and channel dimensions respectively. Experimentally, our extensive experiments on the OCTA-500 dataset show that our proposed algorithm achieves state-of-the-art performance compared with previous methods.



قيم البحث

اقرأ أيضاً

The precise detection of blood vessels in retinal images is crucial to the early diagnosis of the retinal vascular diseases, e.g., diabetic, hypertensive and solar retinopathies. Existing works often fail in predicting the abnormal areas, e.g, sudden brighter and darker areas and are inclined to predict a pixel to background due to the significant class imbalance, leading to high accuracy and specificity while low sensitivity. To that end, we propose a novel error attention refining network (ERA-Net) that is capable of learning and predicting the potential false predictions in a two-stage manner for effective retinal vessel segmentation. The proposed ERA-Net in the refine stage drives the model to focus on and refine the segmentation errors produced in the initial training stage. To achieve this, unlike most previous attention approaches that run in an unsupervised manner, we introduce a novel error attention mechanism which considers the differences between the ground truth and the initial segmentation masks as the ground truth to supervise the attention map learning. Experimental results demonstrate that our method achieves state-of-the-art performance on two common retinal blood vessel datasets.
Learning structural information is critical for producing an ideal result in retinal image segmentation. Recently, convolutional neural networks have shown a powerful ability to extract effective representations. However, convolutional and pooling op erations filter out some useful structural information. In this paper, we propose an Attention Guided Network (AG-Net) to preserve the structural information and guide the expanding operation. In our AG-Net, the guided filter is exploited as a structure sensitive expanding path to transfer structural information from previous feature maps, and an attention block is introduced to exclude the noise and reduce the negative influence of background further. The extensive experiments on two retinal image segmentation tasks (i.e., blood vessel segmentation, optic disc and cup segmentation) demonstrate the effectiveness of our proposed method.
Retinal blood vessel can assist doctors in diagnosis of eye-related diseases such as diabetes and hypertension, and its segmentation is particularly important for automatic retinal image analysis. However, it is challenging to segment these vessels s tructures, especially the thin capillaries from the color retinal image due to low contrast and ambiguousness. In this paper, we propose pyramid U-Net for accurate retinal vessel segmentation. In pyramid U-Net, the proposed pyramid-scale aggregation blocks (PSABs) are employed in both the encoder and decoder to aggregate features at higher, current and lower levels. In this way, coarse-to-fine context information is shared and aggregated in each block thus to improve the location of capillaries. To further improve performance, two optimizations including pyramid inputs enhancement and deep pyramid supervision are applied to PSABs in the encoder and decoder, respectively. For PSABs in the encoder, scaled input images are added as extra inputs. While for PSABs in the decoder, scaled intermediate outputs are supervised by the scaled segmentation labels. Extensive evaluations show that our pyramid U-Net outperforms the current state-of-the-art methods on the public DRIVE and CHASE-DB1 datasets.
157 - Muyi Sun , Guanhong Zhang 2021
Accurate retinal vessel segmentation is a challenging problem in color fundus image analysis. An automatic retinal vessel segmentation system can effectively facilitate clinical diagnosis and ophthalmological research. Technically, this problem suffe rs from various degrees of vessel thickness, perception of details, and contextual feature fusion. For addressing these challenges, a deep learning based method has been proposed and several customized modules have been integrated into the well-known encoder-decoder architecture U-net, which is mainly employed in medical image segmentation. Structurally, cascaded dilated convolutional modules have been integrated into the intermediate layers, for obtaining larger receptive field and generating denser encoded feature maps. Also, the advantages of the pyramid module with spatial continuity have been taken, for multi-thickness perception, detail refinement, and contextual feature fusion. Additionally, the effectiveness of different normalization approaches has been discussed in network training for different datasets with specific properties. Experimentally, sufficient comparative experiments have been enforced on three retinal vessel segmentation datasets, DRIVE, CHASEDB1, and the unhealthy dataset STARE. As a result, the proposed method outperforms the work of predecessors and achieves state-of-the-art performance in Sensitivity/Recall, F1-score and MCC.
109 - Xu Sun , Xingxing Cao , Yehui Yang 2020
Retinal vessel segmentation is a fundamental step in screening, diagnosis, and treatment of various cardiovascular and ophthalmic diseases. Robustness is one of the most critical requirements for practical utilization, since the test images may be ca ptured using different fundus cameras, or be affected by various pathological changes. We investigate this problem from a data augmentation perspective, with the merits of no additional training data or inference time. In this paper, we propose two new data augmentation modules, namely, channel-wise random Gamma correction and channel-wise random vessel augmentation. Given a training color fundus image, the former applies random gamma correction on each color channel of the entire image, while the latter intentionally enhances or decreases only the fine-grained blood vessel regions using morphological transformations. With the additional training samples generated by applying these two modules sequentially, a model could learn more invariant and discriminating features against both global and local disturbances. Experimental results on both real-world and synthetic datasets demonstrate that our method can improve the performance and robustness of a classic convolutional neural network architecture. Source codes are available https://github.com/PaddlePaddle/Research/tree/master/CV/robust_vessel_segmentation
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا