ﻻ يوجد ملخص باللغة العربية
3D to 2D retinal vessel segmentation is a challenging problem in Optical Coherence Tomography Angiography (OCTA) images. Accurate retinal vessel segmentation is important for the diagnosis and prevention of ophthalmic diseases. However, making full use of the 3D data of OCTA volumes is a vital factor for obtaining satisfactory segmentation results. In this paper, we propose a Progressive Attention-Enhanced Network (PAENet) based on attention mechanisms to extract rich feature representation. Specifically, the framework consists of two main parts, the three-dimensional feature learning path and the two-dimensional segmentation path. In the three-dimensional feature learning path, we design a novel Adaptive Pooling Module (APM) and propose a new Quadruple Attention Module (QAM). The APM captures dependencies along the projection direction of volumes and learns a series of pooling coefficients for feature fusion, which efficiently reduces feature dimension. In addition, the QAM reweights the features by capturing four-group cross-dimension dependencies, which makes maximum use of 4D feature tensors. In the two-dimensional segmentation path, to acquire more detailed information, we propose a Feature Fusion Module (FFM) to inject 3D information into the 2D path. Meanwhile, we adopt the Polarized Self-Attention (PSA) block to model the semantic interdependencies in spatial and channel dimensions respectively. Experimentally, our extensive experiments on the OCTA-500 dataset show that our proposed algorithm achieves state-of-the-art performance compared with previous methods.
The precise detection of blood vessels in retinal images is crucial to the early diagnosis of the retinal vascular diseases, e.g., diabetic, hypertensive and solar retinopathies. Existing works often fail in predicting the abnormal areas, e.g, sudden
Learning structural information is critical for producing an ideal result in retinal image segmentation. Recently, convolutional neural networks have shown a powerful ability to extract effective representations. However, convolutional and pooling op
Retinal blood vessel can assist doctors in diagnosis of eye-related diseases such as diabetes and hypertension, and its segmentation is particularly important for automatic retinal image analysis. However, it is challenging to segment these vessels s
Accurate retinal vessel segmentation is a challenging problem in color fundus image analysis. An automatic retinal vessel segmentation system can effectively facilitate clinical diagnosis and ophthalmological research. Technically, this problem suffe
Retinal vessel segmentation is a fundamental step in screening, diagnosis, and treatment of various cardiovascular and ophthalmic diseases. Robustness is one of the most critical requirements for practical utilization, since the test images may be ca