ﻻ يوجد ملخص باللغة العربية
Gravitational microlensing is currently the only technique that helps study the Galactic distribution of planets as a function of distance from the Galactic center. The Galactic location of a lens system can be uniquely determined only when at least two of the three quantities that determine the mass--distance relations are measured. However, even if only one mass--distance relation can be obtained, a large sample of microlensing events can be used to statistically discuss the Galactic distribution of the lenses. In this study, we extract the Galactic distribution of planetary systems from the distribution of the lens-source proper motion, $mu_{rm rel}$, for a given Einstein radius crossing time, $t_{rm E}$, measured for the 28 planetary events in the statistical sample by Suzuki et al. (2016). Because microlensing is randomly caused by stars in our Galaxy, the observational distribution can be predicted using a Galactic model. We incorporate the planet-hosting probability, $P_{rm host} propto M_{rm L}^m R_{rm L}^r$, into a Galactic model for random-selected stars, where $M_{rm L}$ is the lens mass ($sim$ host mass), and $R_{rm L}$ is the Galactocentric distance. By comparing the observed distribution with the model-predicted $mu_{rm rel}$ distribution for a given $t_{rm E}$ at various combinations of $(m ,r)$, we obtain an estimate $r = 0.2 pm 0.4$ under a plausible uniform prior for $m$ of $0<m<2$. This indicates that the dependence of the planet frequency on the Galactocentric distance is not large, and suggests that the Galactic bulge does have planets.
We report the discovery of 31 blue, short period, pulsators made using data taken as part of the Rapid Temporal Survey (RATS). We find they have periods between 51-83 mins and full-amplitudes between 0.05-0.65 mag. Using the period-luminosity relatio
We show that the pulsar mass depends on the environment, and that it decreases going towards the center of the Milky Way. This is due to two combined effects, the capture and accumulation of self-interacting, non-annihilating dark matter by pulsars,
We present models for the formation of terrestrial planets, and the collisional evolution of debris disks, in planetary systems that contain multiple unstable gas giants. We previously showed that the dynamics of the giant planets introduces a correl
Context: Stellar evolution theory suggests that the relationship between number ratios of supernova (SN) types and metallicity holds important clues as to the nature of the progenitor stars (mass, metallicity, rotation, binarity, etc). Aims: We inves
We analyze the highest-resolution millimeter continuum and near-infrared (NIR) scattered-light images presented to date of the circumbinary disk orbiting V4046 Sgr, a ~20 Myr old actively accreting, close binary T Tauri star system located a mere 72.