ﻻ يوجد ملخص باللغة العربية
It is likely that young protostellar discs undergo a self-gravitating phase. Such systems are characterised by the presence of a spiral pattern that can be either in a quasi-steady state or in a non-linear unstable condition. This spiral wave affects both the gas dynamics and kinematics, resulting in deviations from the Keplerian rotation. Recently, a lot of attention has been devoted to kinematic studies of planet forming environments, and we are now able to measure even small perturbations of velocity field thanks to high spatial and spectral resolution observations of protostellar discs. In this work, we investigate the kinematic signatures of gravitational instability: we perform an analytical study of the linear response of a self-gravitating disc to a spiral-like perturbation, focusing our attention on the velocity field perturbations. We show that unstable discs have clear kinematic imprints into the gas component across the entire disc extent, due to the GI spiral wave perturbation, resulting in deviations from Keplerian rotation. The shape of these signatures depends on several parameters, but they are significantly affected by the cooling factor: by detecting these features, we can put constraints on protoplanetary discs cooling.
Exoplanets form in protoplanetary accretion discs. The total protoplanetary disc mass is the most fundamental parameter, since it sets the mass budget for planet formation. Although observations with the Atacama Large Millimeter/Submillimeter array (
The Protoplanetary Discussions conference --- held in Edinburgh, UK, from 7th --11th March 2016 --- included several open sessions led by participants. This paper reports on the discussions collectively concerned with the multiphysics modelling of pr
Circumstellar discs may become warped or broken into distinct planes if there is a stellar or planetary companion with an orbit that is misaligned with respect to the disc. There is mounting observational evidence for protoplanetary discs with misali
We perform numerical simulations of solid particle motion in a shearing box model of a protoplanetary disc. The accretion flow is turbulent due to the action of the magnetorotational instability. Aerodynamic drag on the particles is modelled using th
We carry out three-dimensional hydrodynamical simulations to study planet-disc interactions for inclined high mass planets, focusing on the discs secular evolution induced by the planet. We find that, when the planet is massive enough and the induced