ﻻ يوجد ملخص باللغة العربية
We present and study a novel task named Blind Image Decomposition (BID), which requires separating a superimposed image into constituent underlying images in a blind setting, that is, both the source components involved in mixing as well as the mixing mechanism are unknown. For example, rain may consist of multiple components, such as rain streaks, raindrops, snow, and haze. Rainy images can be treated as an arbitrary combination of these components, some of them or all of them. How to decompose superimposed images, like rainy images, into distinct source components is a crucial step towards real-world vision systems. To facilitate research on this new task, we construct three benchmark datasets, including mixed image decomposition across multiple domains, real-scenario deraining, and joint shadow/reflection/watermark removal. Moreover, we propose a simple yet general Blind Image Decomposition Network (BIDeN) to serve as a strong baseline for future work. Experimental results demonstrate the tenability of our benchmarks and the effectiveness of BIDeN. Code and project page are available.
The explosive growth of image data facilitates the fast development of image processing and computer vision methods for emerging visual applications, meanwhile introducing novel distortions to the processed images. This poses a grand challenge to exi
Semantic segmentation is essentially important to biomedical image analysis. Many recent works mainly focus on integrating the Fully Convolutional Network (FCN) architecture with sophisticated convolution implementation and deep supervision. In this
Image decomposition is a crucial subject in the field of image processing. It can extract salient features from the source image. We propose a new image decomposition method based on convolutional neural network. This method can be applied to many im
We propose a convolutional neural network (CNN) architecture for image classification based on subband decomposition of the image using wavelets. The proposed architecture decomposes the input image spectra into multiple critically sampled subbands,
Intrinsic image decomposition is the classical task of mapping image to albedo. The WHDR dataset allows methods to be evaluated by comparing predictions to human judgements (lighter, same as, darker). The best modern intrinsic image methods learn a m