ترغب بنشر مسار تعليمي؟ اضغط هنا

Particle Acceleration and Transport at the Sun Inferred from Fermi/LAT Observations of >100 MeV Gamma-rays

80   0   0.0 ( 0 )
 نشر من قبل Nat Gopalswamy
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The sustained gamma-ray emission (SGRE) events from the Sun are associated with an ultrafast (2000 km/s or greater) halo coronal mass ejection (CME) and a type II radio burst in the decameter-hectometric (DH) wavelengths. The SGRE duration is linearly related to the type II burst duration indicating that >300 MeV protons required for SGREs are accelerated by the same shock that accelerates tens of keV electrons that produce type II bursts. When magnetically well connected, the associated solar energetic particle (SEP) event has a hard spectrum, indicating copious acceleration of high-energy protons. In one of the SGRE events observed on 2014 January 7 by Fermi/LAT, the SEP event detected by GOES has a very soft spectrum with not many particles beyond 100 MeV. This contradicts the presence of the SGRE, implying the presence of significant number of >300 MeV protons. Furthermore, the durations of the type II burst and the SGRE agree with the known linear relationship between them (Gopalswamy et al. 2018, ApJ 868, L19). We show that the soft spectrum is due to poor magnetic connectivity of the shock nose to an Earth observer. Even though the location of the eruption (S15W11) is close to the disk center, the CME propagated non-radially making the CME flank crossing the ecliptic rather than the nose. High-energy particles are accelerated near the nose, so they do not reach GOES but they do precipitate to the vicinity of the eruption region to produce SGRE. This study provides further evidence that SGRE is caused by protons accelerated in shocks and propagating sunward to interact with the atmospheric ions.



قيم البحث

اقرأ أيضاً

205 - Paola Grandi 2011
We review the high energy properties of Misaligned AGNs associated with gamma-ray sources detected by Fermi in 24 months of survey. Most of them are nearby emission low power radio galaxies (i.e FRIs) which probably have structured jets. On the contr ary, high power radio sources (i.e FRIIs) with GeV emission are rare. The small number of FRIIs does not seem to be related to their higher redshifts. Assuming proportionality between the radio core flux and the gamma-ray flux, several of them are expected to be bright enough to be detected above 100 MeV in spite of their distance. We suggest that beaming/jet structural differences are responsible for the detection rate discrepancy observed between FRIs and FRIIs.
We present the first Fermi Large Area Telescope (LAT) low energy catalog (1FLE) of sources detected in the energy range 30 - 100 MeV. The COMPTEL telescope detected sources below 30 MeV, while catalogs released by the Fermi-LAT and EGRET collaboratio ns use energies above 100 MeV. We create a list of sources detected in the energy range between 30 and 100 MeV, which closes a gap of point source analysis between the COMPTEL catalog and the Fermi-LAT catalogs. One of the main challenges in the analysis of point sources is the construction of the background diffuse emission model. In our analysis, we use a background-independent method to search for point-like sources based on a wavelet transform implemented in the PGWave code. The 1FLE contains 198 sources detected above 3 $sigma$ significance with eight years and nine months of the Fermi-LAT data. For 187 sources in the 1FLE catalog we have found an association in the Fermi-LAT 3FGL catalog: 148 are extragalactic, 22 are Galactic, and 17 are unclassified in the 3FGL. The ratio of the number of flat spectrum radio quasars (FSRQ) to BL Lacertae (BL Lacs) in 1FLE is 3 to 1, which can be compared with an approximately 1 to 1 ratio for the 3FGL or a 1 to 6 ratio for 3FHL. The higher ratio of the FSRQs in the 1FLE is expected due to generally softer spectra of FSRQs relative to BL Lacs. Most BL Lacs in 1FLE are of low-synchrotron peaked blazar type (18 out of 31), which have softer spectra and higher redshifts than BL Lacs on average. Correspondingly, we find that the average redshift of the BL Lacs in 1FLE is higher than in 3FGL or 3FHL. There are 11 sources that do not have associations in the 3FGL. Most of the unassociated sources either come from regions of bright diffuse emission or have several known 3FGL sources in the vicinity, which can lead to source confusion. The remaining unassociated sources have significance less than 4 $sigma$.
Recent accurate measurements of cosmic-ray (CR) species by ATIC-2, CREAM, and PAMELA reveal an unexpected hardening in the proton and He spectra above a few hundred GeV, a gradual softening of the spectra just below a few hundred GeV, and a harder sp ectrum of He compared to that of protons. These newly-discovered features may offer a clue to the origin of high-energy CRs. We use the ${it Fermi}$ Large Area Telescope observations of the $gamma$-ray emission from the Earths limb for an indirect measurement of the local spectrum of CR protons in the energy range $sim 90~$GeV-$6~$TeV (derived from a photon energy range $15~$GeV-$1~$TeV). Our analysis shows that single power law and broken power law spectra fit the data equally well and yield a proton spectrum with index $2.68 pm 0.04$ and $2.61 pm 0.08$ above $sim 200~$GeV, respectively.
Previous analyses of point sources in the gamma-ray range were done either below 30 MeV or above 100 MeV. Below 30 MeV, the imaging Compton telescope (COMPTEL) onboard NASAs Compton Gamma-Ray Observatory detected 26 steady sources in the energy range from 0.75 to 30 MeV. At high energy, the Fermi Large Area Telescope (LAT) has detected more than three thousand sources between 100 MeV and 300 GeV. Since the Fermi LAT detects gamma rays also below 100 MeV, we apply a point source detection algorithm in the energy range between 30 MeV and 100 MeV. In the analysis we use PGWave, which is a background independent tool based on a wavelet transform.
A deep observation campaign carried out by the High Energy Stereoscopic System (H.E.S.S.) on Centaurus A enabled the discovery of gamma rays from the blazar 1ES 1312-423, two degrees away from the radio galaxy. With a differential flux at 1 TeV of (1 .9 +/-0.6(stat) +/-0.4(sys)) x 10^{-13} /cm^2 /s /TeV corresponding to 0.5% of the Crab nebula differential flux and a spectral index of 2.9 +/- 0.5 (stat) +/- 0.2 (sys), 1ES 1312-423 is one of the faintest sources ever detected in the very high energy (E>100 GeV) extragalactic sky. A careful analysis using three and a half years of Fermi-LAT data allows the discovery at high energies (E>100 MeV) of a hard spectrum (index of 1.4 +/- 0.4 (stat) +/- 0.2 (sys)) source coincident with 1ES 1312-423. Radio, optical, UV and X-ray observations complete the spectral energy distribution of this blazar, now covering 16 decades in energy. The emission is successfully fitted with a synchrotron self Compton model for the non-thermal component, combined with a black-body spectrum for the optical emission from the host galaxy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا