ﻻ يوجد ملخص باللغة العربية
Kernel methods are powerful for machine learning, as they can represent data in feature spaces that similarities between samples may be faithfully captured. Recently, it is realized that machine learning enhanced by quantum computing is closely related to kernel methods, where the exponentially large Hilbert space turns to be a feature space more expressive than classical ones. In this paper, we generalize quantum kernel methods by encoding data into continuous-variable quantum states, which can benefit from the infinite-dimensional Hilbert space of continuous variables. Specially, we propose squeezed-state encoding, in which data is encoded as either in the amplitude or the phase. The kernels can be calculated on a quantum computer and then are combined with classical machine learning, e.g. support vector machine, for training and predicting tasks. Their comparisons with other classical kernels are also addressed. Lastly, we discuss physical implementations of squeezed-state encoding for machine learning in quantum platforms such as trapped ions.
Quantum computers have the opportunity to be transformative for a variety of computational tasks. Recently, there have been proposals to use the unsimulatably of large quantum devices to perform regression, classification, and other machine learning
Machine learning is seen as a promising application of quantum computation. For near-term noisy intermediate-scale quantum (NISQ) devices, parametrized quantum circuits (PQCs) have been proposed as machine learning models due to their robustness and
Two-qubit systems typically employ 36 projective measurements for high-fidelity tomographic estimation. The overcomplete nature of the 36 measurements suggests possible robustness of the estimation procedure to missing measurements. In this paper, we
In order to leverage the full power of quantum noise squeezing with unavoidable decoherence, a complete understanding of the degradation in the purity of squeezed light is demanded. By implementing machine learning architecture with a convolutional n
Many quantum machine learning (QML) algorithms that claim speed-up over their classical counterparts only generate quantum states as solutions instead of their final classical description. The additional step to decode quantum states into classical v