ترغب بنشر مسار تعليمي؟ اضغط هنا

Crystallization behaviors in superionic conductor Na$_3$PS$_4$

51   0   0.0 ( 0 )
 نشر من قبل Hiroshi Nakajima Dr.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

All-solid-state batteries using sodium are promising candidates for next-generation rechargeable batteries due to the limited lithium resources. A practical sodium battery requires an electrolyte with high conductivity. Cubic Na$_3$PS$_4$ exhibiting high conductivity of over 10$^{-4}$ S cm$^{-1}$ is obtained by crystallizing amorphous Na$_3$PS$_4$ synthesized by ball milling. Amorphous Na$_3$PS$_4$ crystallizes in a cubic structure and then is transformed into a tetragonal phase upon heating. In this study, in situ observation by transmission electron microscopy demonstrates that the crystallite size drastically increases during the transition from the cubic phase to the tetragonal phase. Moreover, an electron diffraction analysis reveals that amorphous domains and nano-sized crystallites coexist in the cubic Na$_3$PS$_4$ specimen, while the tetragonal phase contains micro-sized crystallites. The nano-sized crystallites and the composite formed by crystallites and amorphous domains are most likely responsible for the increase in conductivity in the cubic Na$_3$PS$_4$ specimens.


قيم البحث

اقرأ أيضاً

We report inelastic and elastic neutron scattering, magnetic susceptibility, and heat capacity measurements of polycrystalline sodium ruthenate (Na$_3$RuO$_4$). Previous work suggests this material consists of isolated tetramers of $S=3/2$ Ru$^{5+}$ ions in a so-called lozenge configuration. Using a Heisenberg antiferromagnet Hamiltonian, we analytically determine the energy eigenstates for general spin $S$. From this model, the neutron scattering cross-sections for excitations associated with spin-3/2 spin-tetramer configurations is determined. Comparison of magnetic susceptibility and inelastic neutron scattering results shows that the proposed lozenge model is not distinctly supported, but provides evidence that the system may be better described as a pair of non-interacting inequivalent dimers, textit{i.e} double dimers. However, the existence of long-range magnetic order below $T_c approx 28$ K immediately questions such a description. Although no evidence of the lozenge model is observed, future studies on single crystals may further clarify the appropriate magnetic Hamiltonian.
Magnetic properties and underlying magnetic models of the synthetic A$_2$Cu$_3$O(SO$_4)_3$ fedotovite (A = K) and puninite (A = Na) minerals, as well as the mixed euchlorine-type NaKCu$_3$O(SO$_4)_3$ are reported. We show that all these compounds con tain magnetic Cu$_6$ hexamer units, which at temperatures below about 100 K act as single spin-1 entities. Weak interactions between these magnetic molecules lead to long-range order below $T_N$ = 3.4 K (A = Na), 4.7 K (A = NaK), and about 3.0 K (A = K). The formation of the magnetic order is elucidated by ab initio calculations that reveal two-dimensional inter-hexamer interactions within crystallographic $bc$ planes. This model indicates the presence of a weakly distorted square lattice of $S=1$ magnetic ions and challenges the earlier description of the A$_2$Cu$_3$O(SO$_4)_3$ minerals in terms of Haldane spin chains.
The honeycomb lattice iridate Na$_2$IrO$_3$ shows frustrated magnetism and can potentially display Kitaev-like exchange interactions. Recently, it was shown that the electronic properties of the surface of crystalline Na$_2$IrO$_3$ can be tuned by Ar plasma treatment in a controlled manner leading to various phases of matter ranging from a fully gapped to a metallic surface, where the possibility of a charge-density wave (CDW) like transition is also expected. Here, through direct imaging with an atomic force microscope (AFM) in air, we show that the surface of crystalline Na$_2$IrO$_3$ evolves rapidly as elemental Na effuses out of the interleave planes to the surface and undergoes sublimation thereby disappearing from the surface gradually over time. Using conductive AFM we recorded a series of topographs and surface current maps simultaneously and found that the modification of the surface leads to change in the electronic properties in a dynamic fashion until the whole system reaches a dynamic equilibrium. These observations are important in the context of the exotic electronic and magnetic properties that the surface of Na$_2$IrO$_3$ displays.
Electrical conductivity and high dielectric constant are in principle self-excluding, which makes the terms insulator and dielectric usually synonymous. This is certainly true when the electrical carriers are electrons, but not necessarily in a mater ial where ions are extremely mobile, electronic conduction is negligible and the charge transfer at the interface is immaterial. Here we demonstrate in a perovskite-derived structure containing five-coordinated Ti atoms, a colossal dielectric constant (up to $mbox{10}^9$) together with very high ionic conduction $mbox{10}^{-3}mbox{S.cm}^{-1}$ at room temperature. Coupled investigations of I-V and dielectric constant behavior allow to demonstrate that, due to ion migration and accumulation, this material behaves like a giant dipole, exhibiting colossal electrical polarization (of the order of $mbox{0.1,C.cm}^{-2}$). Therefore, it may be considered as a ferro-ionet and is extremely promising in terms of applications.
63 - J. H. Shim , Kyoo Kim , B. I. Min 2002
We have investigated electronic structures of La$_3$S$_4$ and Ce$_3$S$_4$ using the LSDA and LSDA+$U$ methods. Calculated density of states (DOS) are compared with the experimental DOS obtained by the valence band photoemission spectroscopy. The DOS at $E_{rm{F}}$ indicates the 5$d$ character in La$_3$S$_4$ and 4$f$ character in Ce$_3$S$_4$. It is found to be nearly half metallic in the ferromagnetic ground state of Ce$_3$S$_4$. %Ce$_3$S$_4$ has ferromagnetic ground states with spin and orbital magnetic %moments of 1.27 $mu_{rm{B}}$ and $-$2.81 $mu_{rm{B}}$ per Ce, respectively, %and shows nearly half metallic ground state. We discuss the superconductivity and structural transition in La$_3$S$_4$, and the absence of structural transition in Ce$_3$S$_4$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا