ﻻ يوجد ملخص باللغة العربية
The classical additive Deligne-Simpson problem is the existence problem for Fuchsian connections with residues at the singular points in specified adjoint orbits. Crawley-Boevey found the solution in 2003 by reinterpreting the problem in terms of quiver varieties. A more general version of this problem, solved by Hiroe, allows additional unramified irregular singularities. We apply the theory of fundamental and regular strata due to Bremer and Sage to formulate a version of the Deligne-Simpson problem in which certain ramified singularities are allowed. These allowed singular points are called toral singularities; they are singularities whose leading term with respect to a lattice chain filtration is regular semisimple. We solve this problem in the important special case of connections on $mathbb{G}_m$ with a maximally ramified singularity at $0$ and possibly an additional regular singular point at infinity. We also give a complete characterization of all such connections which are rigid, under the additional hypothesis of unipotent monodromy at infinity.
Let ${mathcal B}_g(r)$ be the moduli space of triples of the form $(X,, K^{1/2}_X,, F)$, where $X$ is a compact connected Riemann surface of genus $g$, with $g, geq, 2$, $K^{1/2}_X$ is a theta characteristic on $X$, and $F$ is a stable vector bundle
Over a smooth and proper complex scheme, the differential Galois group of an integrable connection may be obtained as the closure of the transcendental monodromy representation. In this paper, we employ a completely algebraic variation of this idea b
We establish theorems on the existence and compactness of solutions to the $sigma_2$-Nirenberg problem on the standard sphere $mathbb S^2$. A first significant ingredient, a Liouville type theorem for the associated fully nonlinear Mobius invariant e
In previous work, the authors have developed a geometric theory of fundamental strata to study connections on the projective line with irregular singularities of parahoric formal type. In this paper, the moduli space of connections that contain regul
For an abeloid variety $A$ over a complete algebraically closed field extension $K$ of $mathbb Q_p$, we construct a $p$-adic Corlette-Simpson correspondence, namely an equivalence between finite-dimensional continuous $K$-linear representations of th