ﻻ يوجد ملخص باللغة العربية
The theory of remote sensing shows that observing a planet at multiple phase angles ($alpha$) is a powerful strategy to characterize its atmosphere. Here, we analyse how the information contained in reflected-starlight spectra of exoplanets depends on the phase angle, and the potential of multi-phase measurements to better constrain the atmospheric properties and the planet radius ($R_p$). We simulate spectra (500-900 nm) at $alpha$=37$^circ$, 85$^circ$ and 123$^circ$ with spectral resolution $R$~125-225 and signal-to-noise ratio $S/N$=10. Assuming a H$_2$-He atmosphere, we use a seven-parameter model that includes the atmospheric methane abundance ($f_{CH_4}$), the optical properties of a cloud layer and $R_p$. All these parameters are assumed unknown a priori and explored with an MCMC retrieval method. We find that no single-phase observation can robustly identify whether the atmosphere has clouds or not. A single-phase observation at $alpha$=123$^circ$ and $S/N$=10 can constrain $R_p$ with a maximum error of 35%, regardless of the cloud coverage. Combining small (37$^circ$) and large (123$^circ$) phase angles is a generally effective strategy to break multiple parameter degeneracies. This enables to determine the presence or absence of a cloud and its main properties, $f_{CH_4}$ and $R_p$ in all the explored scenarios. Other strategies, such as doubling $S/N$ to 20 for a single-phase observation or combining small (37$^circ$) and moderate (85$^circ$) phase angles, fail to achieve this. We show that the improvements in multi-phase retrievals are associated with the shape of the scattering phase function of the cloud aerosols and that the improvement is more modest for isotropically-scattering aerosols. We finally discuss that misidentifying the background gas in the retrievals of super-Earth observations leads to a systematic underestimate of the absorbing gas abundance.
The Mid-Infrared instrument (MIRI) on board the James Webb Space Telescope will perform the first ever characterization of young giant exoplanets observed by direct imaging in the 5-28 microns spectral range. This wavelength range is key for both det
Recently, Teachey, Kipping, and Schmitt (2018) reported the detection of a candidate exomoon, tentatively designated Kepler-1625b I, around a giant planet in the Kepler field. The candidate exomoon would be about the size and mass of Neptune, conside
Oxygen and methane are considered to be the canonical biosignatures of modern Earth, and the simultaneous detection of these gases in a planetary atmosphere is an especially strong biosignature. However, these gases may be challenging to detect toget
We present detections of methane in R of $sim$1300, L band spectra of VHS 1256 b and PSO 318.5, two low gravity, red, late L dwarfs that share the same colors as the HR 8799 planets. These spectra reveal shallow methane features, which indicate VHS 1
The circumstellar disk of PDS 70 hosts two forming planets, which are actively accreting gas from their environment. In this work, we report the first detection of PDS 70 b in the Br$alpha$ and $M$ filters with VLT/NACO, a tentative detection of PDS