ﻻ يوجد ملخص باللغة العربية
Special Relativity is a cornerstone of modern physical theory. While a standard coordinate model is well-known and widely taught today, several alternative systems of axioms exist. This paper reports on the formalisation of one such system which is closer in spirit to Hilberts axiomatic approach to Euclidean geometry than to the vector space approach employed by Minkowski. We present a mechanisation in Isabelle/HOL of the system of axioms as well as theorems relating to temporal order. Proofs and excerpts of Isabelle/Isar scripts are discussed, particularly where the formal work required additional steps, alternative approaches, or corrections to Schutz prose.
In this article we present an ongoing effort to formalise quantum algorithms and results in quantum information theory using the proof assistant Isabelle/HOL. Formal methods being critical for the safety and security of algorithms and protocols, we f
We describe a dataset expressing and proving properties of graph trails, using Isabelle/HOL. We formalize the reasoning about strictly increasing and decreasing trails, using weights over edges, and prove lower bounds over the length of trails in wei
The International Mathematical Olympiad (IMO) is perhaps the most celebrated mental competition in the world and as such is among the greatest grand challenges for Artificial Intelligence (AI). The IMO Grand Challenge, recently formulated, requires t
Proof assistants are important tools for teaching logic. We support this claim by discussing three formalizations in Isabelle/HOL used in a recent course on automated reasoning. The first is a formalization of System W (a system of classical proposit
Using the methods of ordinary quantum mechanics we study $kappa$-Minkowski space as a quantum space described by noncommuting self-adjoint operators, following and enlarging arXiv:1811.08409. We see how the role of Fourier transforms is played in thi