ترغب بنشر مسار تعليمي؟ اضغط هنا

Ensuring the Inclusive Use of Natural Language Processing in the Global Response to COVID-19

99   0   0.0 ( 0 )
 نشر من قبل Alexandra Luccioni
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Natural language processing (NLP) plays a significant role in tools for the COVID-19 pandemic response, from detecting misinformation on social media to helping to provide accurate clinical information or summarizing scientific research. However, the approaches developed thus far have not benefited all populations, regions or languages equally. We discuss ways in which current and future NLP approaches can be made more inclusive by covering low-resource languages, including alternative modalities, leveraging out-of-the-box tools and forming meaningful partnerships. We suggest several future directions for researchers interested in maximizing the positive societal impacts of NLP.



قيم البحث

اقرأ أيضاً

Misinformation of COVID-19 is prevalent on social media as the pandemic unfolds, and the associated risks are extremely high. Thus, it is critical to detect and combat such misinformation. Recently, deep learning models using natural language process ing techniques, such as BERT (Bidirectional Encoder Representations from Transformers), have achieved great successes in detecting misinformation. In this paper, we proposed an explainable natural language processing model based on DistilBERT and SHAP (Shapley Additive exPlanations) to combat misinformation about COVID-19 due to their efficiency and effectiveness. First, we collected a dataset of 984 claims about COVID-19 with fact checking. By augmenting the data using back-translation, we doubled the sample size of the dataset and the DistilBERT model was able to obtain good performance (accuracy: 0.972; areas under the curve: 0.993) in detecting misinformation about COVID-19. Our model was also tested on a larger dataset for AAAI2021 - COVID-19 Fake News Detection Shared Task and obtained good performance (accuracy: 0.938; areas under the curve: 0.985). The performance on both datasets was better than traditional machine learning models. Second, in order to boost public trust in model prediction, we employed SHAP to improve model explainability, which was further evaluated using a between-subjects experiment with three conditions, i.e., text (T), text+SHAP explanation (TSE), and text+SHAP explanation+source and evidence (TSESE). The participants were significantly more likely to trust and share information related to COVID-19 in the TSE and TSESE conditions than in the T condition. Our results provided good implications in detecting misinformation about COVID-19 and improving public trust.
The COVID-19 pandemic has had a significant impact on society, both because of the serious health effects of COVID-19 and because of public health measures implemented to slow its spread. Many of these difficulties are fundamentally information needs ; attempts to address these needs have caused an information overload for both researchers and the public. Natural language processing (NLP), the branch of artificial intelligence that interprets human language, can be applied to address many of the information needs made urgent by the COVID-19 pandemic. This review surveys approximately 150 NLP studies and more than 50 systems and datasets addressing the COVID-19 pandemic. We detail work on four core NLP tasks: information retrieval, named entity recognition, literature-based discovery, and question answering. We also describe work that directly addresses aspects of the pandemic through four additional tasks: topic modeling, sentiment and emotion analysis, caseload forecasting, and misinformation detection. We conclude by discussing observable trends and remaining challenges.
386 - Mariya Toneva , Leila Wehbe 2019
Neural networks models for NLP are typically implemented without the explicit encoding of language rules and yet they are able to break one performance record after another. This has generated a lot of research interest in interpreting the representa tions learned by these networks. We propose here a novel interpretation approach that relies on the only processing system we have that does understand language: the human brain. We use brain imaging recordings of subjects reading complex natural text to interpret word and sequence embeddings from 4 recent NLP models - ELMo, USE, BERT and Transformer-XL. We study how their representations differ across layer depth, context length, and attention type. Our results reveal differences in the context-related representations across these models. Further, in the transformer models, we find an interaction between layer depth and context length, and between layer depth and attention type. We finally hypothesize that altering BERT to better align with brain recordings would enable it to also better understand language. Probing the altered BERT using syntactic NLP tasks reveals that the model with increased brain-alignment outperforms the original model. Cognitive neuroscientists have already begun using NLP networks to study the brain, and this work closes the loop to allow the interaction between NLP and cognitive neuroscience to be a true cross-pollination.
Reliable uncertainty quantification is a first step towards building explainable, transparent, and accountable artificial intelligent systems. Recent progress in Bayesian deep learning has made such quantification realizable. In this paper, we propos e novel methods to study the benefits of characterizing model and data uncertainties for natural language processing (NLP) tasks. With empirical experiments on sentiment analysis, named entity recognition, and language modeling using convolutional and recurrent neural network models, we show that explicitly modeling uncertainties is not only necessary to measure output confidence levels, but also useful at enhancing model performances in various NLP tasks.
Signed languages are the primary means of communication for many deaf and hard of hearing individuals. Since signed languages exhibit all the fundamental linguistic properties of natural language, we believe that tools and theories of Natural Languag e Processing (NLP) are crucial towards its modeling. However, existing research in Sign Language Processing (SLP) seldom attempt to explore and leverage the linguistic organization of signed languages. This position paper calls on the NLP community to include signed languages as a research area with high social and scientific impact. We first discuss the linguistic properties of signed languages to consider during their modeling. Then, we review the limitations of current SLP models and identify the open challenges to extend NLP to signed languages. Finally, we urge (1) the adoption of an efficient tokenization method; (2) the development of linguistically-informed models; (3) the collection of real-world signed language data; (4) the inclusion of local signed language communities as an active and leading voice in the direction of research.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا