ترغب بنشر مسار تعليمي؟ اضغط هنا

Coherence and flow-maximization of a one-way valve

112   0   0.0 ( 0 )
 نشر من قبل Massimiliano Daniele Rosini
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a mathematical model for the gas flow through a one-way valve and focus on two issues. First, we propose a way to eliminate the chattering (the fast switch on and off of the valve) by slightly modifying the design of the valve. This mathematically amounts to the construction of a coupling Riemann solver with a suitable stability property, namely, coherence. We provide a numerical comparison of the behavior of the two valves. Second, we analyze, both analytically and numerically, for several significative situations, the maximization of the flow through the modified valve according to a control parameter of the valve and time.

قيم البحث

اقرأ أيضاً

We present a non-local version of a scalar balance law modeling traffic flow with on-ramps and off-ramps. The source term is used to describe the traffic flow over the on-ramp and off-ramps. We approximate the problem using an upwind-type numerical s cheme and we provide L^infty and BV estimates for the sequence of approximate solutions. Together with a discrete entropy inequality, we also show the well-posedness of the considered class of scalar balance laws. Some numerical simulations illustrate the behaviour of solutions in sample cases.
125 - Christophe Besse 2020
We introduce and implement a method to compute stationary states of nonlinear Schrodinger equations on metric graphs. Stationary states are obtained as local minimizers of the nonlinear Schrodinger energy at fixed mass. Our method is based on a norma lized gradient flow for the energy (i.e. a gradient flow projected on a fixed mass sphere) adapted to the context of nonlinear quantum graphs. We first prove that, at the continuous level, the normalized gradient flow is well-posed, mass-preserving, energy diminishing and converges (at least locally) towards stationary states. We then establish the link between the continuous flow and its discretized version. We conclude by conducting a series of numerical experiments in model situations showing the good performance of the discrete flow to compute stationary states. Further experiments as well as detailed explanation of our numerical algorithm are given in a companion paper.
The detection of anomaly subgraphs naturally appears in various real-life tasks, yet label noise seriously interferes with the result. As a motivation for our work, we focus on inaccurate supervision and use prior knowledge to reduce effects of noise , like query graphs. Anomalies in attributed networks exhibit structured-properties, e.g., anomaly in money laundering with ring structure property. It is the main challenge to fast and approximate query anomaly in attributed networks. We propose a novel search method: 1) decomposing a query graph into stars; 2) sorting attributed vertices; and 3) assembling anomaly stars under the root vertex sequence into near query. We present ANOMALYMAXQ and perform on 68,411 company network (Tianyancha dataset),7.72m patent networks (Company patents) and so on. Extensive experiments show that our method has high robustness and fast response time. When running the patent dataset,the average running time to query the graph once is about 252 seconds.
The goal of this work is to design an acoustic mode converter. More precisely, the wave number is chosen so that two modes can propagate. We explain how to construct geometries such that the energy of the modes is completely transmitted and additiona lly the mode 1 is converted into the mode 2 and conversely. To proceed, we work in a symmetric waveguide made of two branches connected by two thin ligaments whose lengths and positions are carefully tuned. The approach is based on asymptotic analysis for thin ligaments around resonance lengths. We also provide numerical results to illustrate the theory.
We consider a free boundary problem on three-dimensional cones depending on a parameter c and study when the free boundary is allowed to pass through the vertex of the cone. Combining analysis and computer-assisted proof, we show that when c is less than 0.43, the free boundary may pass through the vertex of the cone.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا