ترغب بنشر مسار تعليمي؟ اضغط هنا

Resource Allocation in Heterogeneously-Distributed Joint Radar-Communications under Asynchronous Bayesian Tracking Framework

80   0   0.0 ( 0 )
 نشر من قبل Linlong Wu
 تاريخ النشر 2021
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

Optimal allocation of shared resources is key to deliver the promise of jointly operating radar and communications systems. In this paper, unlike prior works which examine synergistic access to resources in colocated joint radar-communications or among identical systems, we investigate this problem for a distributed system comprising heterogeneous radars and multi-tier communications. In particular, we focus on resource allocation in the context of multi-target tracking (MTT) while maintaining stable communication connections. By simultaneously allocating the available power, dwell time and shared bandwidth, we improve the MTT performance under a Bayesian tracking framework and guarantee the communications throughput. Our alternating allocation of heterogeneous resources (ANCHOR) approach solves the resulting nonconvex problem based on the alternating optimization method that monotonically improves the Bayesian Cramer-Rao bound. Numerical experiments demonstrate that ANCHOR significant improves the tracking error over two baseline allocations and stability under different target scenarios and radar-communications network distributions.



قيم البحث

اقرأ أيضاً

Due to spectrum scarcity, the coexistence of radar and wireless communication has gained substantial research interest recently. Among many scenarios, the heterogeneouslydistributed joint radar-communication system is promising due to its flexibility and compatibility of existing architectures. In this paper, we focus on a heterogeneous radar and communication network (HRCN), which consists of various generic radars for multiple target tracking (MTT) and wireless communications for multiple users. We aim to improve the MTT performance and maintain good throughput levels for communication users by a well-designed resource allocation. The problem is formulated as a Bayesian Cramer-Rao bound (CRB) based minimization subjecting to resource budgets and throughput constraints. The formulated nonconvex problem is solved based on an alternating descent-ascent approach. Numerical results demonstrate the efficacy of the proposed allocation scheme for this heterogeneous network.
114 - Jiaqi Zhang , Keyou You , 2019
This paper proposes a distributed dual gradient tracking algorithm (DDGT) to solve resource allocation problems over an unbalanced network, where each node in the network holds a private cost function and computes the optimal resource by interacting only with its neighboring nodes. Our key idea is the novel use of the distributed push-pull gradient algorithm (PPG) to solve the dual problem of the resource allocation problem. To study the convergence of the DDGT, we first establish the sublinear convergence rate of PPG for non-convex objective functions, which advances the existing results on PPG as they require the strong-convexity of objective functions. Then we show that the DDGT converges linearly for strongly convex and Lipschitz smooth cost functions, and sublinearly without the Lipschitz smoothness. Finally, experimental results suggest that DDGT outperforms existing algorithms.
This paper investigates an intelligent reflecting surface (IRS) aided cooperative communication network, where the IRS exploits large reflecting elements to proactively steer the incident radio-frequency wave towards destination terminals (DTs). As t he number of reflecting elements increases, the reflection resource allocation (RRA) will become urgently needed in this context, which is due to the non-ignorable energy consumption. The goal of this paper, therefore, is to realize the RRA besides the active-passive beamforming design, where RRA is based on the introduced modular IRS architecture. The modular IRS consists with multiple modules, each of which has multiple reflecting elements and is equipped with a smart controller, all the controllers can communicate with each other in a point-to-point fashion via fiber links. Consequently, an optimization problem is formulated to maximize the minimum SINR at DTs, subject to the module size constraint and both individual source terminal (ST) transmit power and the reflecting coefficients constraints. Whereas this problem is NP-hard due to the module size constraint, we develop an approximate solution by introducing the mixed row block $ell_{1,F}$-norm to transform it into a suitable semidefinite relaxation. Finally, numerical results demonstrate the meaningfulness of the introduced modular IRS architecture.
Synergistic design of communications and radar systems with common spectral and hardware resources is heralding a new era of efficiently utilizing a limited radio-frequency spectrum. Such a joint radar-communications (JRC) model has advantages of low -cost, compact size, less power consumption, spectrum sharing, improved performance, and safety due to enhanced information sharing. Today, millimeter-wave (mm-wave) communications have emerged as the preferred technology for short distance wireless links because they provide transmission bandwidth that is several gigahertz wide. This band is also promising for short-range radar applications, which benefit from the high-range resolution arising from large transmit signal bandwidths. Signal processing techniques are critical in implementation of mmWave JRC systems. Major challenges are joint waveform design and performance criteria that would optimally trade-off between communications and radar functionalities. Novel multiple-input-multiple-output (MIMO) signal processing techniques are required because mmWave JRC systems employ large antenna arrays. There are opportunities to exploit recent advances in cognition, compressed sensing, and machine learning to reduce required resources and dynamically allocate them with low overheads. This article provides a signal processing perspective of mmWave JRC systems with an emphasis on waveform design.
Dual function radar communications (DFRC) systems are attractive technologies for autonomous vehicles, which utilize electromagnetic waves to constantly sense the environment while simultaneously communicating with neighbouring devices. An emerging a pproach to implement DFRC systems is to embed information in radar waveforms via index modulation (IM). Implementation of DFRC schemes in vehicular systems gives rise to strict constraints in terms of cost, power efficiency, and hardware complexity. In this paper, we extend IM-based DFRC systems to utilize sparse arrays and frequency modulated continuous waveforms (FMCWs), which are popular in automotive radar for their simplicity and low hardware complexity. The proposed FMCW-based radar-communications system (FRaC) operates at reduced cost and complexity by transmitting with a reduced number of radio frequency modules, combined with narrowband FMCW signalling. This is achieved via array sparsification in transmission, formulating a virtual multiple-input multiple-output array by combining the signals in one coherent processing interval, in which the narrowband waveforms are transmitted in a randomized manner. Performance analysis and numerical results show that the proposed radar scheme achieves similar resolution performance compared with a wideband radar system operating with a large receive aperture, while requiring less hardware overhead. For the communications subsystem, FRaC achieves higher rates and improved error rates compared to dual-function signalling based on conventional phase modulation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا