ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Foundation of Sparse Sensing (Part II): Diophantine Sampling and Array Configuration

319   0   0.0 ( 0 )
 نشر من قبل Hanshen Xiao
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In the second part of the series papers, we set out to study the algorithmic efficiency of sparse sensing. Stemmed from co-prime sensing, we propose a generalized framework, termed Diophantine sensing, which utilizes generic Diophantine equation theory and higher-order sparse ruler to strengthen the sampling time, the degree of freedom (DoF), and the sampling sparsity, simultaneously. Resorting to higher-moment statistics, the proposed Diophantine framework presents two fundamental improvements. First, on frequency estimation, we prove that given arbitrarily large down-sampling rates, there exist sampling schemes where the number of samples needed is only proportional to the sum of DoF and the number of snapshots required, which implies a linear sampling time. Second, on Direction-of-arrival (DoA) estimation, we propose two generic array constructions such that given N sensors, the minimal distance between sensors can be as large as a polynomial of N, O(N^q), which indicates that an arbitrarily sparse array (with arbitrarily small mutual coupling) exists given sufficiently many sensors. In addition, asymptotically, the proposed array configurations produce the best known DoF bound compared to existing sparse array designs.



قيم البحث

اقرأ أيضاً

185 - Hanshen Xiao , Yaowen Zhang , 2021
In the first part of the series papers, we set out to answer the following question: given specific restrictions on a set of samplers, what kind of signal can be uniquely represented by the corresponding samples attained, as the foundation of sparse sensing. It is different from compressed sensing, which exploits the sparse representation of a signal to reduce sample complexity (compressed sampling or acquisition). We use sparse sensing to denote a board concept of methods whose main focus is to improve the efficiency and cost of sampling implementation itself. The sparse here is referred to sampling at a low temporal or spatial rate (sparsity constrained sampling or acquisition), which in practice models cheaper hardware such as lower power, less memory and throughput. We take frequency and direction of arrival (DoA) estimation as concrete examples and give the necessary and sufficient requirements of the sampling strategy. Interestingly, we prove that these problems can be reduced to some (multiple) remainder model. As a straightforward corollary, we supplement and complete the theory of co-prime sampling, which receives considerable attention over last decade. On the other hand, we advance the understanding of the robust multiple remainder problem, which models the case when sampling with noise. A sharpened tradeoff between the parameter dynamic range and the error bound is derived. We prove that, for N-frequency estimation in either complex or real waveforms, once the least common multiple (lcm) of the sampling rates selected is sufficiently large, one may approach an error tolerance bound independent of N.
With a careful design of sample spacings either in temporal and spatial domain, co-prime sensing can reconstruct the autocorrelation at a significantly denser set of points based on Bazout theorem. However, still restricted from Bazout theorem, it is required O(M1 + M2) samples to estimate frequencies in the case of co-prime sampling, where M1 and M2 are co-prime down-sampling rates. Besides, for Direction-of-arrival (DOA) estimation, the sensors can not be arbitrarily sparse in co-prime arrays. In this letter, we restrain our focus on complex waveforms and present a framework under multiple samplers/sensors for both frequency and DOA estimation based on Diophantine equation, which is essentially to estimate the autocorrelation with higher order statistics instead of the second order one. We prove that, given arbitrarily high down-sampling rates, there exist sampling schemes with samples to estimate autocorrelation only proportional to the sum of degrees of freedom (DOF) and the number of snapshots required. In the scenario of DOA estimation, we show there exist arrays of N sensors with O(N^3) DOF and O(N) minimal distance between sensors.
We discuss a novel sampling theorem on the sphere developed by McEwen & Wiaux recently through an association between the sphere and the torus. To represent a band-limited signal exactly, this new sampling theorem requires less than half the number o f samples of other equiangular sampling theorems on the sphere, such as the canonical Driscoll & Healy sampling theorem. A reduction in the number of samples required to represent a band-limited signal on the sphere has important implications for compressive sensing, both in terms of the dimensionality and sparsity of signals. We illustrate the impact of this property with an inpainting problem on the sphere, where we show superior reconstruction performance when adopting the new sampling theorem.
Advances of information-theoretic understanding of sparse sampling of continuous uncoded signals at sampling rates exceeding the Landau rate were reported in recent works. This work examines sparse sampling of coded signals at sub-Landau sampling rat es. It is shown that with coded signals the Landau condition may be relaxed and the sampling rate required for signal reconstruction and for support detection can be lower than the effective bandwidth. Equivalently, the number of measurements in the corresponding sparse sensing problem can be smaller than the support size. Tight bounds on information rates and on signal and support detection performance are derived for the Gaussian sparsely sampled channel and for the frequency-sparse channel using the context of state dependent channels. Support detection results are verified by a simulation. When the system is high-dimensional the required SNR is shown to be finite but high and rising with decreasing sampling rate, in some practical applications it can be lowered by reducing the a-priory uncertainty about the support e.g. by concentrating the frequency support into a finite number of subbands.
399 - Ivan Dokmanic , Yue M. Lu 2015
We propose a sampling scheme that can perfectly reconstruct a collection of spikes on the sphere from samples of their lowpass-filtered observations. Central to our algorithm is a generalization of the annihilating filter method, a tool widely used i n array signal processing and finite-rate-of-innovation (FRI) sampling. The proposed algorithm can reconstruct $K$ spikes from $(K+sqrt{K})^2$ spatial samples. This sampling requirement improves over previously known FRI sampling schemes on the sphere by a factor of four for large $K$. We showcase the versatility of the proposed algorithm by applying it to three different problems: 1) sampling diffusion processes induced by localized sources on the sphere, 2) shot noise removal, and 3) sound source localization (SSL) by a spherical microphone array. In particular, we show how SSL can be reformulated as a spherical sparse sampling problem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا