ﻻ يوجد ملخص باللغة العربية
Spin-charge interconversion in systems with spin-orbit coupling has provided a new route for the generation and detection of spin currents in functional devices for memory and logic such as spin-orbit torque switching in magnetic memories or magnetic state reading in spin-based logic. Disentangling the bulk (spin Hall effect) from the interfacial (inverse spin galvanic effect) contribution has been a common issue to properly quantify the spin-charge interconversion in these systems, being the case of Au paradigmatic. Here, we obtain a large spin-charge interconversion at a highly conducting Au/Cu interface which is experimentally shown to arise from the inverse spin galvanic effect of the interface and not from the spin Hall effect of bulk Au. We use two parameters independent of the microscopic details to properly quantify the spin-charge interconversion and the spin losses due to the interfacial spin-orbit coupling, providing an adequate benchmarking to compare with any spin-charge interconversion system. The good performance of this metallic interface, not based in Bi, opens the path to the use of much simpler light/heavy metal systems.
In bilayer systems consisting of an ultrathin ferromagnetic layer adjacent to a metal with strong spin-orbit coupling, an applied in-plane current induces torques on the magnetization. The torques that arise from spin-orbit coupling are of particular
Charge transfer is of particular importance in manipulating the interface physics in transition-metal oxide heterostructures. In this work, we have fabricated epitaxial bilayers composed of polar 3d LaMnO3 and nonpolar 5d SrIrO3. Systematic magnetic
We measure spin-orbit torques (SOTs) in a unique model system of all-epitaxial ferrite/Pt bilayers to gain insights into charge-spin interconversion in Pt. With negligible electronic conduction in the insulating ferrite, the crystalline Pt film acts
The existence of a spin-orbit coupling (SOC) induced by the gradient of the effective mass in low-dimensional heterostructures is revealed. In structurally asymmetric quasi-two-dimensional semiconductor heterostructures the presence of a mass gradien
When a local and attractive potential is quenched in a nanowire, the spectrum changes its topology from a purely continuum to a continuum and discrete portion. We show that, under appropriate conditions, this quench leads to stable coherent oscillati