ترغب بنشر مسار تعليمي؟ اضغط هنا

Stellar Obliquities in Long-period Exoplanet Systems (SOLES) I: The Spin-Orbit Alignment of K2-140 b

93   0   0.0 ( 0 )
 نشر من قبل Malena Rice
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Obliquity measurements for stars hosting relatively long-period giant planets with weak star-planet tidal interactions may play a key role in distinguishing between formation theories for shorter-period hot Jupiters. Few such obliquity measurements have been made to date due to the relatively small sample of known wide-orbiting, transiting Jovian-mass planets and the challenging nature of these targets, which tend to have long transit durations and orbit faint stars. We report a measurement of the Rossiter-McLaughlin effect across the transit of K2-140 b, a Jupiter-mass planet with period $P=6.57$ days orbiting a $V=12.6$ star. We find that K2-140 is an aligned system with projected spin-orbit angle $lambda=0.5pm9.7$ degrees, suggesting a dynamically cool formation history. This observation builds towards a population of tidally detached giant planet spin-orbit angles that will enable a direct comparison with the distribution of close-orbiting hot Jupiter orbital configurations, elucidating the prevalent formation mechanisms of each group.

قيم البحث

اقرأ أيضاً

The angle $psi$ between a planets orbital axis and the spin axis of its parent star is an important diagnostic of planet formation, migration, and tidal evolution. We seek empirical constraints on $psi$ by measuring the stellar inclination $i_{rm s}$ via asteroseismology for an ensemble of 25 solar-type hosts observed with NASAs Kepler satellite. Our results for $i_{rm s}$ are consistent with alignment at the 2-$sigma$ level for all stars in the sample, meaning that the system surrounding the red-giant star Kepler-56 remains as the only unambiguous misaligned multiple-planet system detected to date. The availability of a measurement of the projected spin-orbit angle $lambda$ for two of the systems allows us to estimate $psi$. We find that the orbit of the hot-Jupiter HAT-P-7b is likely to be retrograde ($psi=116.4^{+30.2}_{-14.7}:{rm deg}$), whereas that of Kepler-25c seems to be well aligned with the stellar spin axis ($psi=12.6^{+6.7}_{-11.0}:{rm deg}$). While the latter result is in apparent contradiction with a statement made previously in the literature that the multi-transiting system Kepler-25 is misaligned, we show that the results are consistent, given the large associated uncertainties. Finally, we perform a hierarchical Bayesian analysis based on the asteroseismic sample in order to recover the underlying distribution of $psi$. The ensemble analysis suggests that the directions of the stellar spin and planetary orbital axes are correlated, as conveyed by a tendency of the host stars to display large inclination values.
112 - E. K. Simpson 2009
We present an observation of the Rossiter-McLaughlin effect for the planetary system WASP-3. Radial velocity measurements were made during transit using the SOPHIE spectrograph at the 1.93m telescope at Haute-Provence Observatory. The shape of the ef fect shows that the sky-projected angle between the stellar rotation axis and planetary orbital axis (lambda) is small and consistent with zero within 2 sigma; lambda = 15 +10/-9 deg. WASP-3b joins the ~two-thirds of planets with measured spin-orbit angles that are well aligned and are thought to have undergone a dynamically-gentle migration process such as planet-disc interactions. We find a systematic effect which leads to an anomalously high determination of the projected stellar rotational velocity (vsini = 19.6 +2.2/-2.1 km/s) compared to the value found from spectroscopic line broadening (vsini = 13.4 +/- 1.5 km/s). This is thought to be caused by a discrepancy in the assumptions made in the extraction and modelling of the data. Using a model developed by Hirano et al. (2009) designed to address this issue, we find vsini to be consistent with the value obtained from spectroscopic broadening measurements (vsini = 15.7 +1.4/-1.3 km/s).
Binaries are not always neatly aligned. Previous observations of the DI Her system showed that the spin axes of both stars are highly inclined with respect to one another and the orbital axis. Here we report on a measurement of the spin-axis orientat ion of the primary star of the NY Cep system, which is similar to DI Her in many respects: it features two young early-type stars (~6 Myr, B0.5V+B2V), in an eccentric and relatively long-period orbit (e=0.48, P=15.d3). The sky projections of the rotation vector and the spin vector are well-aligned (beta_p = 2 +- 4 degrees), in strong contrast to DI Her. Although no convincing explanation has yet been given for the misalignment of DI Her, our results show that the phenomenon is not universal, and that a successful theory will need to account for the different outcome in the case of NY Cep.
We present the discovery of two new 10-day period giant planets from the Transiting Exoplanet Survey Satellite ($TESS$) mission, whose masses were precisely determined using a wide diversity of ground-based facilities. TOI-481 b and TOI-892 b have si milar radii ($0.99pm0.01$ $rm R_{J}$ and $1.07pm0.02$ $rm R_{J}$, respectively), and orbital periods (10.3311 days and 10.6266 days, respectively), but significantly different masses ($1.53pm0.03$ $rm M_{J}$ versus $0.95pm0.07$ $rm M_{J}$, respectively). Both planets orbit metal-rich stars ([Fe/H]= $+0.26pm 0.05$ dex and [Fe/H] = $+0.24 pm 0.05$ dex, for TOI-481 and TOI-892, respectively) but at different evolutionary stages. TOI-481 is a $rm M_{star}$ = $1.14pm0.02$ $rm M_{odot}$, $rm R_{star}$ = $1.66pm0.02$ $rm R_{odot}$ G-type star ($T_{rm eff}$ = $5735 pm 72$ K), that with an age of 6.7 Gyr, is in the turn-off point of the main sequence. TOI-892, on the other hand, is a F-type dwarf star ($T_{rm eff}$ = $6261 pm 80$ K), which has a mass of $rm M_{star}$ = $1.28pm0.03$ $rm M_{odot}$, and a radius of $rm R_{star}$ = $1.39pm0.02$ $rm R_{odot}$. TOI-481 b and TOI-892 b join the scarcely populated region of transiting gas giants with orbital periods longer than 10 days, which is important to constrain theories of the formation and structure of hot Jupiters.
We report the discovery from K2 of a transiting planet in an 18.25-d, eccentric (0.19$pm$ 0.04) orbit around K2-99, an 11th magnitude subgiant in Virgo. We confirm the planetary nature of the companion with radial velocities, and determine that the s tar is a metal-rich ([Fe/H] = 0.20$pm$0.05) subgiant, with mass $1.60^{+0.14}_{-0.10}~M_odot$ and radius $3.1pm 0.1~R_odot$. The planet has a mass of $0.97pm0.09~M_{rm Jup}$ and a radius $1.29pm0.05~R_{rm Jup}$. A measured systemic radial acceleration of $-2.12pm0.04~{rm m s^{-1} d^{-1}}$ offers compelling evidence for the existence of a third body in the system, perhaps a brown dwarf orbiting with a period of several hundred days.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا