ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for TeV emission from the Fermi Bubbles at low Galactic latitudes with H.E.S.S. inner Galaxy survey observations

70   0   0.0 ( 0 )
 نشر من قبل Emmanuel Moulin
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Fermi Bubbles were discovered about a decade ago in the {it Fermi}-LAT data as a double-lobe structure extending up to 55 deg. in Galactic latitudes above and below the Galactic Center. At the moment their origin is still unknown. The H.E.S.S. collaboration is currently performing the first ever survey in TeV gamma rays of the Milky Way inner region: the Inner Galaxy Survey. This survey is intended to achieve the best sensitivity to faint and diffuse emissions in a region of several degrees around the Galactic Centre. It provides an unprecedented sensitivity to dark matter signals, new diffuse emissions, and TeV outflows from the Galactic Centre. Understanding the properties of the Fermi Bubbles at low Galactic latitudes will provide key insights into their origin. We search for TeV emission at the base of the Fermi Bubbles using low-latitude spatial templates. The first results obtained with the 2014-2020 H.E.S.S. observations will be reported.



قيم البحث

اقرأ أيضاً

The presence of dark matter (DM) is suggested by a wealth of astrophysical and cosmological measurements. However, its underlying nature is yet unknown. Among the most promising candidates are weakly interacting massive particles (WIMPs): particles w ith mass and coupling strength at the electroweak scale and thermally produced in the early universe have a present relic density consistent with that observed today. WIMP self-annihilation would produce Standard Model particles including gamma-rays, which have been long-time recognized as a prime messenger to indirectly detect dark matter signals. The centre of the Milky Way is predicted as the brightest source of DM annihilations. The H.E.S.S. collaboration is currently performing a survey of the inner region of the Milky Way, the Inner Galaxy Survey (IGS), intended to achieve the best sensitivity to faint and diffuse emissions in a region of several degrees around the Galactic Centre. We analyzed 2014-2020 observations taken with the five-telescope array to search for a DM annihilation signal. With the current dataset of about 550 hours, we found no significant excess and therefore derived strong constraints on the velocity-weighted annihilation cross-section. TeV thermal WIMPs can be probed in different annihilation channels.
The High Energy Stereoscopic System (H.E.S.S.) is an array of four imaging atmospheric-Cherenkov telescopes located in Namibia and designed to detect extensive air showers initiated by gamma-rays in the very-high-energy domain. It is an ideal instrum ent for surveying the Galactic plane in search of new sources, thanks to its location in the Southern Hemisphere, its excellent sensitivity, and its large field-of-view. The efforts of the H.E.S.S. Galactic Plane Survey, the first comprehensive survey of the inner Galaxy at TeV energies, have contributed to the discovery of an unexpectedly large and diverse population of over 60 sources of VHE gamma rays within its current range of l=250 to 65 degrees in longitude and |b|<=3.5 degrees in latitude. The population of VHE gamma-ray emitters is dominated by the pulsar wind nebula and supernova remnant source classes, although nearly a third remain unidentified or confused. The sensitivity of H.E.S.S. to sources in the inner Galaxy has improved significantly over the past two years, from continued survey observations, dedicated follow-up observations of interesting source candidates, and from the development of advanced methods for discrimination of gamma-ray-induced showers from the dominant background of hadron-induced showers. The latest maps of the Galaxy at TeV energies will be presented, and a few remarkable new sources will be highlighted.
The inner region of the Milky Way halo harbors a large amount of dark matter (DM). Given its proximity, it is one of the most promising targets to look for DM. We report on a search for the annihilations of DM particles using $gamma$-ray observations towards the inner 300 parsecs of the Milky Way, with the H.E.S.S. array of ground-based Cherenkov telescopes. The analysis is based on a 2D maximum likelihood method using Galactic center (GC) data accumulated by H.E.S.S. over the last 10 years (2004-2014), and does not show any significant $gamma$-ray signal above background. Assuming Einasto and Navarro-Frenk-White DM density profiles at the GC, we derive upper limits on the annihilation cross section $langle sigma vrangle$. These constraints are the strongest obtained so far in the TeV DM mass range and improve upon previous limits by a factor 5. For the Einasto profile, the constraints reach $langle sigma vrangle$ values of $rm 6times10^{-26} cm^3s^{-1}$ in the $W^+W^-$ channel for a DM particle mass of 1.5 TeV, and $rm 2times10^{-26} cm^3s^{-1}$ in the $tau^+tau^-$ channel for 1 TeV mass. For the first time, ground-based $gamma$-ray observations have reached sufficient sensitivity to probe $langle sigma vrangle$ values expected from the thermal relic density for TeV DM particles.
343 - K. Egberts , F. Brun , S. Casanova 2013
Diffuse gamma-ray emission has long been established as the most prominent feature in the GeV sky. Although the imaging atmospheric Cherenkov technique has been successful in revealing a large population of discrete TeV gamma-ray sources, a thorough investigation of diffuse emission at TeV energies is still pending. Data from the Galactic Plane Survey (GPS) obtained by the High Energy Stereoscopic System (H.E.S.S.) have now achieved a sensitivity and coverage adequate for probing signatures of diffuse emission in the energy range of ~100 GeV to a few TeV. Gamma-rays are produced in cosmic-ray interactions with the interstellar medium (aka sea of cosmic rays) and in inverse Compton scattering on cosmic photon fields. This inevitably leads to guaranteed gamma-ray emission related to the gas content along the line-of-sight. Further contributions relate to those gamma-ray sources that fall below the current detection threshold and the aforementioned inverse Compton emission. Based on the H.E.S.S. GPS, we present the first observational assessment of diffuse TeV gamma-ray emission. The observation is compared with corresponding flux predictions based on the HI (LAB data) and CO (as a tracer of H2, NANTEN data) gas distributions. Consequences for unresolved source contributions and the anticipated level of inverse Compton emission are discussed.
Analysis of the Fermi-LAT data has revealed two extended structures above and below the Galactic Centre emitting gamma rays with a hard spectrum, the so-called Fermi bubbles. Hadronic models attempting to explain the origin of the Fermi bubbles predi ct the emission of high-energy neutrinos and gamma rays with similar fluxes. The ANTARES detector, a neutrino telescope located in the Mediterranean Sea, has a good visibility to the Fermi bubble regions. Using data collected from 2008 to 2011 no statistically significant excess of events is observed and therefore upper limits on the neutrino flux in TeV range from the Fermi bubbles are derived for various assumed energy cutoffs of the source.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا