ﻻ يوجد ملخص باللغة العربية
Recent advances have been made in applying convolutional neural networks to achieve more precise prediction results for medical image segmentation problems. However, the success of existing methods has highly relied on huge computational complexity and massive storage, which is impractical in the real-world scenario. To deal with this problem, we propose an efficient architecture by distilling knowledge from well-trained medical image segmentation networks to train another lightweight network. This architecture empowers the lightweight network to get a significant improvement on segmentation capability while retaining its runtime efficiency. We further devise a novel distillation module tailored for medical image segmentation to transfer semantic region information from teacher to student network. It forces the student network to mimic the extent of difference of representations calculated from different tissue regions. This module avoids the ambiguous boundary problem encountered when dealing with medical imaging but instead encodes the internal information of each semantic region for transferring. Benefited from our module, the lightweight network could receive an improvement of up to 32.6% in our experiment while maintaining its portability in the inference phase. The entire structure has been verified on two widely accepted public CT datasets LiTS17 and KiTS19. We demonstrate that a lightweight network distilled by our method has non-negligible value in the scenario which requires relatively high operating speed and low storage usage.
The success of deep convolutional neural networks is partially attributed to the massive amount of annotated training data. However, in practice, medical data annotations are usually expensive and time-consuming to be obtained. Considering multi-moda
Despite that deep learning has achieved state-of-the-art performance for medical image segmentation, its success relies on a large set of manually annotated images for training that are expensive to acquire. In this paper, we propose an annotation-ef
Accurate image segmentation is crucial for medical imaging applications. The prevailing deep learning approaches typically rely on very large training datasets with high-quality manual annotations, which are often not available in medical imaging. We
The recurrent mechanism has recently been introduced into U-Net in various medical image segmentation tasks. Existing studies have focused on promoting network recursion via reusing building blocks. Although network parameters could be greatly saved,
The implementation of medical AI has always been a problem. The effect of traditional perceptual AI algorithm in medical image processing needs to be improved. Here we propose a method of knowledge AI, which is a combination of perceptual AI and clin