ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient Medical Image Segmentation Based on Knowledge Distillation

106   0   0.0 ( 0 )
 نشر من قبل Dian Qin
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent advances have been made in applying convolutional neural networks to achieve more precise prediction results for medical image segmentation problems. However, the success of existing methods has highly relied on huge computational complexity and massive storage, which is impractical in the real-world scenario. To deal with this problem, we propose an efficient architecture by distilling knowledge from well-trained medical image segmentation networks to train another lightweight network. This architecture empowers the lightweight network to get a significant improvement on segmentation capability while retaining its runtime efficiency. We further devise a novel distillation module tailored for medical image segmentation to transfer semantic region information from teacher to student network. It forces the student network to mimic the extent of difference of representations calculated from different tissue regions. This module avoids the ambiguous boundary problem encountered when dealing with medical imaging but instead encodes the internal information of each semantic region for transferring. Benefited from our module, the lightweight network could receive an improvement of up to 32.6% in our experiment while maintaining its portability in the inference phase. The entire structure has been verified on two widely accepted public CT datasets LiTS17 and KiTS19. We demonstrate that a lightweight network distilled by our method has non-negligible value in the scenario which requires relatively high operating speed and low storage usage.

قيم البحث

اقرأ أيضاً

89 - Kang Li , Lequan Yu , Shujun Wang 2020
The success of deep convolutional neural networks is partially attributed to the massive amount of annotated training data. However, in practice, medical data annotations are usually expensive and time-consuming to be obtained. Considering multi-moda lity data with the same anatomic structures are widely available in clinic routine, in this paper, we aim to exploit the prior knowledge (e.g., shape priors) learned from one modality (aka., assistant modality) to improve the segmentation performance on another modality (aka., target modality) to make up annotation scarcity. To alleviate the learning difficulties caused by modality-specific appearance discrepancy, we first present an Image Alignment Module (IAM) to narrow the appearance gap between assistant and target modality data.We then propose a novel Mutual Knowledge Distillation (MKD) scheme to thoroughly exploit the modality-shared knowledge to facilitate the target-modality segmentation. To be specific, we formulate our framework as an integration of two individual segmentors. Each segmentor not only explicitly extracts one modality knowledge from corresponding annotations, but also implicitly explores another modality knowledge from its counterpart in mutual-guided manner. The ensemble of two segmentors would further integrate the knowledge from both modalities and generate reliable segmentation results on target modality. Experimental results on the public multi-class cardiac segmentation data, i.e., MMWHS 2017, show that our method achieves large improvements on CT segmentation by utilizing additional MRI data and outperforms other state-of-the-art multi-modality learning methods.
149 - Lu Wang , Dong Guo , Guotai Wang 2020
Despite that deep learning has achieved state-of-the-art performance for medical image segmentation, its success relies on a large set of manually annotated images for training that are expensive to acquire. In this paper, we propose an annotation-ef ficient learning framework for segmentation tasks that avoids annotations of training images, where we use an improved Cycle-Consistent Generative Adversarial Network (GAN) to learn from a set of unpaired medical images and auxiliary masks obtained either from a shape model or public datasets. We first use the GAN to generate pseudo labels for our training images under the implicit high-level shape constraint represented by a Variational Auto-encoder (VAE)-based discriminator with the help of the auxiliary masks, and build a Discriminator-guided Generator Channel Calibration (DGCC) module which employs our discriminators feedback to calibrate the generator for better pseudo labels. To learn from the pseudo labels that are noisy, we further introduce a noise-robust iterative learning method using noise-weighted Dice loss. We validated our framework with two situations: objects with a simple shape model like optic disc in fundus images and fetal head in ultrasound images, and complex structures like lung in X-Ray images and liver in CT images. Experimental results demonstrated that 1) Our VAE-based discriminator and DGCC module help to obtain high-quality pseudo labels. 2) Our proposed noise-robust learning method can effectively overcome the effect of noisy pseudo labels. 3) The segmentation performance of our method without using annotations of training images is close or even comparable to that of learning from human annotations.
Accurate image segmentation is crucial for medical imaging applications. The prevailing deep learning approaches typically rely on very large training datasets with high-quality manual annotations, which are often not available in medical imaging. We introduce Annotation-effIcient Deep lEarning (AIDE) to handle imperfect datasets with an elaborately designed cross-model self-correcting mechanism. AIDE improves the segmentation Dice scores of conventional deep learning models on open datasets possessing scarce or noisy annotations by up to 30%. For three clinical datasets containing 11,852 breast images of 872 patients from three medical centers, AIDE consistently produces segmentation maps comparable to those generated by the fully supervised counterparts as well as the manual annotations of independent radiologists by utilizing only 10% training annotations. Such a 10-fold improvement of efficiency in utilizing experts labels has the potential to promote a wide range of biomedical applications.
The recurrent mechanism has recently been introduced into U-Net in various medical image segmentation tasks. Existing studies have focused on promoting network recursion via reusing building blocks. Although network parameters could be greatly saved, computational costs still increase inevitably in accordance with the pre-set iteration time. In this work, we study a multi-scale upgrade of a bi-directional skip connected network and then automatically discover an efficient architecture by a novel two-phase Neural Architecture Search (NAS) algorithm, namely BiX-NAS. Our proposed method reduces the network computational cost by sifting out ineffective multi-scale features at different levels and iterations. We evaluate BiX-NAS on two segmentation tasks using three different medical image datasets, and the experimental results show that our BiX-NAS searched architecture achieves the state-of-the-art performance with significantly lower computational cost.
194 - Yingni Wang , Shuge Lei , Jian Dai 2021
The implementation of medical AI has always been a problem. The effect of traditional perceptual AI algorithm in medical image processing needs to be improved. Here we propose a method of knowledge AI, which is a combination of perceptual AI and clin ical knowledge and experience. Based on this method, the geometric information mining of medical images can represent the experience and information and evaluate the quality of medical images.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا