ﻻ يوجد ملخص باللغة العربية
Harnessing pulse generation from an ultrafast laser is a challenging task as reaching a specific mode-locked regime generally involves adjusting multiple control parameters, in connection with a wide range of accessible pulse dynamics. Machine-learning tools have recently shown promising for the design of smart lasers that can tune themselves to desired operating states. Yet, machine-learning algorithms are mainly designed to target regimes of parameter-invariant, stationary pulse generation, while the intelligent excitation of evolving pulse patterns in a laser remains largely unexplored. Breathing solitons exhibiting periodic oscillatory behavior, emerging as ubiquitous mode-locked regime of ultrafast fibre lasers, are attracting considerable interest by virtue of their connection with a range of important nonlinear dynamics, such as exceptional points, and the Fermi-Pasta-Ulam paradox. Here, we implement an evolutionary algorithm for the self-optimisation of the breather regime in a fibre laser mode-locked through a four-parameter nonlinear polarisation evolution. Depending on the specifications of the merit function used for the optimisation procedure, various breathing-soliton states are obtained, including single breathers with controllable oscillation period and breathing ratio, and breather molecular complexes with a controllable number of elementary constituents. Our work opens up a novel avenue for exploration and optimisation of complex dynamics in nonlinear systems.
Solitons, as stable localized wave packets that can propagate long distance in dispersive media without changing their shapes, are ubiquitous in nonlinear physical systems. Since the first experimental realization of optical bright solitons in the an
Based on self - consistent field theory we study a soliton generation in cw solid-state lasers with semiconductor saturable absorber. Various soliton destabilizations, i.e. the switch from femtosecond to picosecond generation (picosecond collapse), a
Physical systems with co-existence and interplay of processes featuring distinct spatio-temporal scales are found in various research areas ranging from studies of brain activity to astrophysics. Complexity of such systems makes their theoretical and
The propagation of ultrashort pulses in optical fibre displays complex nonlinear dynamics that find important applications in fields such as high power pulse compression and broadband supercontinuum generation. Such nonlinear evolution however, depen
Mode-locked lasers exhibit complex nonlinear dynamics. Precise observation of these dynamics will aid in understanding of the underlying physics and provide new insights for laser design and applications. The starting dynamics, from initial noise flu