ﻻ يوجد ملخص باللغة العربية
The existence of a giant planet beyond Neptune -- referred to as Planet Nine (P9) -- has been inferred from the clustering of longitude of perihelion and pole position of distant eccentric Kuiper belt objects (KBOs). After updating calculations of observational biases, we find that the clustering remains significant at the 99.6% confidence level. We thus use these observations to determine orbital elements of P9. A suite of numerical simulations shows that the orbital distribution of the distant KBOs is strongly influenced by the mass and orbital elements of P9 and thus can be used to infer these parameters. Combining the biases with these numerical simulations, we calculate likelihood values for discrete set of P9 parameters, which we then use as input into a Gaussian Process emulator that allows a likelihood computation for arbitrary values of all parameters. We use this emulator in a Markov Chain Monte Carlo analysis to estimate parameters of P9. We find a P9 mass of $6.2^{+2.2}_{-1.3}$ Earth masses, semimajor axis of $380^{+140}_{-80}$ AU, inclination of $16pm5^circ$ and perihelion of $300^{+85}_{-60}$ AU. Using samples of the orbital elements and estimates of the radius and albedo of such a planet, we calculate the probability distribution function of the on-sky position of Planet Nine and of its brightness. For many reasonable assumptions, Planet Nine is closer and brighter than initially expected, though the probability distribution includes a long tail to larger distances, and uncertainties in the radius and albedo of Planet Nine could yield fainter objects.
The observed physical clustering of the orbits of small bodies in the distant Kuiper Belt (TNOs) has recently prompted the prediction of an additional planet in the outer solar system. Since the initial posing of the hypothesis, the effects of Planet
Cosmology experiments at mm-wavelengths can detect Planet Nine if it is the size of Neptune, has an effective temperature of 40 K, and is 700 AU from the Sun. It would appear as a ~30 mJy source at 1 mm with an annual parallax of ~5 arcmin. The chall
We investigate the physical characteristics of the Solar Systems proposed Planet Nine using modeling tools with a heritage in studying Uranus and Neptune. For a range of plausible masses and interior structures, we find upper limits on the intrinsic
HD 106906 is a 15 Myr old short-period (49 days) spectroscopic binary that hosts a wide-separation (737 au) planetary-mass ($sim11,M_{rm Jup}$) common proper motion companion, HD 106906 b. Additionally, a circumbinary debris disk is resolved at optic
We evaluate the dynamical stability of a selection of outer solar system objects in the presence of the proposed new Solar System member Planet Nine. We use a Monte Carlo suite of numerical N-body integrations to construct a variety of orbital elemen