ﻻ يوجد ملخص باللغة العربية
For a graph whose vertex set is a finite set of points in $mathbb R^d$, consider the closed (open) balls with diameters induced by its edges. The graph is called a (an open) Tverberg graph if these closed (open) balls intersect. Using the idea of halving lines, we show that (i) for any finite set of points in the plane, there exists a Hamiltonian cycle that is a Tverberg graph; (ii) for any $n$ red and $n$ blue points in the plane, there exists a perfect red-blue matching that is a Tverberg graph. Using the idea of infinite descent, we prove that (iii) for any even set of points in $mathbb R^d$, there exists a perfect matching that is an open Tverberg graph; (iv) for any $n$ red and $n$ blue points in $ mathbb R^d $, there exists a perfect red-blue matching that is a Tverberg graph.
A seminal theorem of Tverberg states that any set of $T(r,d)=(r-1)(d+1)+1$ points in $mathbb{R}^d$ can be partitioned into $r$ subsets whose convex hulls have non-empty $r$-fold intersection. Almost any collection of fewer points in $mathbb{R}^d$ can
We present a motivated exposition of the proof of the following Tverberg Theorem: For every integers $d,r$ any $(d+1)(r-1)+1$ points in $mathbb R^d$ can be decomposed into $r$ groups such that all the $r$ convex hulls of the groups have a common poin
We describe a new algorithm, the $(k,ell)$-pebble game with colors, and use it obtain a characterization of the family of $(k,ell)$-sparse graphs and algorithmic solutions to a family of problems concerning tree decompositions of graphs. Special inst
We describe a new algorithm, the $(k,\\ell)$-pebble game with colors, and use\nit obtain a characterization of the family of $(k,\\ell)$-sparse graphs and\nalgorithmic solutions to a family of problems concerning tree decompositions of\ngraphs. Spe
Tverberg-type theory aims to establish sufficient conditions for a simplicial complex $Sigma$ such that every continuous map $fcolon Sigma to mathbb{R}^d$ maps $q$ points from pairwise disjoint faces to the same point in $mathbb{R}^d$. Such results a