ترغب بنشر مسار تعليمي؟ اضغط هنا

Observations of cold gas and star formation in dwarf S0 galaxies

122   0   0.0 ( 0 )
 نشر من قبل Xue Ge
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Very little work has been done on star formation in dwarf lenticular galaxies (S0s). We present 2D-spectroscopic and millimetre observations made by Centro Astronomico Hispano Aleman (CAHA) 3.5 m optical and the IRAM-30 m millimetre telescopes, respectively, for a sample of four dwarf S0 galaxies with multiple star formation regions in the field environment. We find that although most of the sources deviate from the star forming main sequence relation, they all follow the Kennicutt-Schmidt law. After comparing the stellar and Halpha kinematics, we find that the velocity fields of both stars and ionized gas do not show regular motion and the velocity dispersions of stars and ionized gas are low in the regions with high star formation, suggesting these star-forming S0 galaxies still have significant rotation. This view can be supported by the result that most of these dwarf S0 galaxies are classified as fast rotators. The ratio of average atomic gas mass to stellar mass (~ 47%) is much greater than that of molecular gas mass to stellar mass (~ 1%). In addition, the gas-phase metallicities in the star-forming regions are lower than that of the non-star-forming regions. These results indicate that the extended star formation may originate from the combination of abundant atomic hydrogen, long dynamic time scale and low-density environment.



قيم البحث

اقرأ أيضاً

140 - L. H. Wei 2009
Recent work has identified a population of low-redshift E/S0 galaxies that lie on the blue sequence in color vs. stellar mass parameter space, where spiral galaxies typically reside. While high-mass blue-sequence E/S0s often resemble young merger or interaction remnants likely to fade to the red sequence, we focus on blue-sequence E/S0s with lower stellar masses (< a few 10^10 M_sun), which are characterized by fairly regular morphologies and low-density field environments where fresh gas infall is possible. This population may provide an evolutionary link between early-type galaxies and spirals through disk regrowth. Focusing on atomic gas reservoirs, we present new GBT HI data for 27 E/S0s on both sequences as well as a complete tabulation of archival HI data for other galaxies in the Nearby Field Galaxy Survey. Normalized to stellar mass, the atomic gas masses for 12 of the 14 blue-sequence E/S0s range from 0.1 to >1.0. These gas-to-stellar mass ratios are comparable to those of spiral and irregular galaxies and have a similar dependence on stellar mass. Assuming that the HI is accessible for star formation, we find that many of our blue-sequence E/S0s can increase in stellar mass by 10-60% in 3 Gyr in both of two limiting scenarios, exponentially declining star formation and constant star formation. In a constant star formation scenario, about half of the blue-sequence E/S0s require fresh gas infall on a timescale of <3 Gyr to avoid exhausting their atomic gas reservoirs and evolving to the red sequence. We present evidence that star formation in these galaxies is bursty and likely involves externally triggered gas inflows. Our analysis suggests that most blue-sequence E/S0s are indeed capable of substantial stellar disk growth on relatively short timescales. (abridged)
Though S0 galaxies are usually thought to be `red and dead, they demonstrate often star formation organized in ring structures. We try to clarify the nature of this phenomenon and its difference from star formation in spiral galaxies. The moderate-lu minosity nearby S0 galaxy, NGC 4513, is studied here. By applying long-slit spectroscopy along the major axis of NGC 4513, we have measured gas and star kinematics, Lick indices for the main body of the galaxy, and strong emission-line flux ratios in the ring. After inspecting the gas excitation in the ring using the line ratios diagnostic diagrams and have assured that it is ionized by young stars, we have determined the gas oxygen abundance by using popular strong-line calibration methods. We have estimated star formation rate (SFR) in the outer ring by using the archival Galaxy Evolution Explorer (GALEX) ultraviolet images of the galaxy. The ionized gas counterrotates the stars over the whole extension of NGC 4513 so being accreted from outside. The gas metallicity in the ring is slightly subsolar, [O/H]=-0.2 dex, matching the metallicity of the stellar component of the main galactic disc. However the stellar component of the ring is much more massive than can be explained by the current star formation level in the ring. We conclude that probably the ring of NGC 4513 is a result of tidal disruption of a massive gas-rich satellite, or it may be a consequence of a long star-formation event provoked by a gas accretion from a cosmological filament having started some 3 Gyr ago.
In order to quantify the relationship between gas accretion and star formation, we analyse a sample of 29 nearby galaxies from the WHISP survey which contains galaxies with and without evidence for recent gas accretion. We compare combined radial pro files of FUV (GALEX) and IR 24 {mu}m (Spitzer) characterizing distributions of recent star formation with radial profiles of CO (IRAM, BIMA, or CARMA) and HI (WSRT) tracing molecular and atomic gas contents to examine star formation efficiencies in symmetric (quiescent), asymmetric (accreting), and interacting (tidally disturbed) galaxies. In addition, we investigate the relationship between star formation rate and HI in the outer discs for the three groups of galaxies. We confirm the general relationship between gas surface density and star formation surface density, but do not find a significant difference between the three groups of galaxies.
We have obtained deep images of the highly isolated (d = 1 Mpc) Aquarius dwarf irregular galaxy (DDO 210) with the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS). The resulting color-magnitude diagram (CMD) reaches more than a magnitu de below the oldest main-sequence turnoff, allowing us to derive the star formation history (SFH) over the entire lifetime of the galaxy with a timing precision of ~10% of the lookback time. Using a maximum likelihood fit to the CMD we find that only ~10% of all star formation in Aquarius took place more than 10 Gyr ago (lookback time equivalent to redshift z ~2). The star formation rate increased dramatically ~6-8 Gyr ago (z ~ 0.7-1.1) and then declined until the present time. The only known galaxy with a more extreme confirmed delay in star formation is Leo A, a galaxy of similar M(HI)/M(stellar), dynamical mass, mean metallicity, and degree of isolation. The delayed stellar mass growth in these galaxies does not track the mean dark matter accretion rate from CDM simulations. The similarities between Leo A and Aquarius suggest that if gas is not removed from dwarf galaxies by interactions or feedback, it can linger for several gigayears without cooling in sufficient quantity to form stars efficiently. We discuss possible causes for the delay in star formation including suppression by reionization and late-time mergers. We find reasonable agreement between our measured SFHs and select cosmological simulations of isolated dwarfs. Because star formation and merger processes are both stochastic in nature, delayed star formation in various degees is predicted to be a characteristic (but not a universal) feature of isolated small galaxies.
We develop a simple analytical criterion to investigate the role of the environment on the onset of star formation. We will consider the main external agents that influence the star formation (i.e. ram pressure, tidal interaction, Rayleigh-Taylor and Kelvin-Helmholtz instabilities) in a spherical galaxy moving through an external environment. The theoretical framework developed here has direct applications to the cases of dwarf galaxies in galaxy clusters and dwarf galaxies orbiting our Milky Way system, as well as any primordial gas-rich cluster of stars orbiting within its host galaxy. We develop an analytic formalism to solve the fluid dynamics equations in a non-inertial reference frame mapped with spherical coordinates. The two-fluids instability at the interface between a stellar system and its surrounding hotter and less dense environment is related to the star formation processes through a set of differential equations. The solution presented here is quite general, allowing us to investigate most kinds of orbits allowed in a gravitationally bound system of stars in interaction with a major massive companion. We present an analytical criterion to elucidate the dependence of star formation in a spherical stellar system (as a dwarf galaxy or a globular cluster) on its surrounding environment useful in theoretical interpretations of numerical results as well as observational applications. We show how spherical coordinates naturally enlighten the interpretation of the two-fluids instability in a geometry that directly applies to astrophysical case. This criterion predicts the threshold value for the onset of star formation in a mass vs. size space for any orbit of interest. Moreover, we show for the first time the theoretical dependencies of the different instability phenomena acting on a system in a fully analytical way.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا