ترغب بنشر مسار تعليمي؟ اضغط هنا

SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation

145   0   0.0 ( 0 )
 نشر من قبل Xidong Peng
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

3D detection plays an indispensable role in environment perception. Due to the high cost of commonly used LiDAR sensor, stereo vision based 3D detection, as an economical yet effective setting, attracts more attention recently. For these approaches based on 2D images, accurate depth information is the key to achieve 3D detection, and most existing methods resort to a preliminary stage for depth estimation. They mainly focus on the global depth and neglect the property of depth information in this specific task, namely, sparsity and locality, where exactly accurate depth is only needed for these 3D bounding boxes. Motivated by this finding, we propose a stereo-image based anchor-free 3D detection method, called structure-aware stereo 3D detector (termed as SIDE), where we explore the instance-level depth information via constructing the cost volume from RoIs of each object. Due to the information sparsity of local cost volume, we further introduce match reweighting and structure-aware attention, to make the depth information more concentrated. Experiments conducted on the KITTI dataset show that our method achieves the state-of-the-art performance compared to existing methods without depth map supervision.

قيم البحث

اقرأ أيضاً

Stereo-based 3D detection aims at detecting 3D object bounding boxes from stereo images using intermediate depth maps or implicit 3D geometry representations, which provides a low-cost solution for 3D perception. However, its performance is still inf erior compared with LiDAR-based detection algorithms. To detect and localize accurate 3D bounding boxes, LiDAR-based models can encode accurate object boundaries and surface normal directions from LiDAR point clouds. However, the detection results of stereo-based detectors are easily affected by the erroneous depth features due to the limitation of stereo matching. To solve the problem, we propose LIGA-Stereo (LiDAR Geometry Aware Stereo Detector) to learn stereo-based 3D detectors under the guidance of high-level geometry-aware representations of LiDAR-based detection models. In addition, we found existing voxel-based stereo detectors failed to learn semantic features effectively from indirect 3D supervisions. We attach an auxiliary 2D detection head to provide direct 2D semantic supervisions. Experiment results show that the above two strategies improved the geometric and semantic representation capabilities. Compared with the state-of-the-art stereo detector, our method has improved the 3D detection performance of cars, pedestrians, cyclists by 10.44%, 5.69%, 5.97% mAP respectively on the official KITTI benchmark. The gap between stereo-based and LiDAR-based 3D detectors is further narrowed.
Recent advances in self-supervised learning havedemonstrated that it is possible to learn accurate monoculardepth reconstruction from raw video data, without using any 3Dground truth for supervision. However, in robotics applications,multiple views o f a scene may or may not be available, depend-ing on the actions of the robot, switching between monocularand multi-view reconstruction. To address this mixed setting,we proposed a new approach that extends any off-the-shelfself-supervised monocular depth reconstruction system to usemore than one image at test time. Our method builds on astandard prior learned to perform monocular reconstruction,but uses self-supervision at test time to further improve thereconstruction accuracy when multiple images are available.When used to update the correct components of the model, thisapproach is highly-effective. On the standard KITTI bench-mark, our self-supervised method consistently outperformsall the previous methods with an average 25% reduction inabsolute error for the three common setups (monocular, stereoand monocular+stereo), and comes very close in accuracy whencompared to the fully-supervised state-of-the-art methods.
Monocular depth estimation is an essential task for scene understanding. The underlying structure of objects and stuff in a complex scene is critical to recovering accurate and visually-pleasing depth maps. Global structure conveys scene layouts, whi le local structure reflects shape details. Recently developed approaches based on convolutional neural networks (CNNs) significantly improve the performance of depth estimation. However, few of them take into account multi-scale structures in complex scenes. In this paper, we propose a Structure-Aware Residual Pyramid Network (SARPN) to exploit multi-scale structures for accurate depth prediction. We propose a Residual Pyramid Decoder (RPD) which expresses global scene structure in upper levels to represent layouts, and local structure in lower levels to present shape details. At each level, we propose Residual Refinement Modules (RRM) that predict residual maps to progressively add finer structures on the coarser structure predicted at the upper level. In order to fully exploit multi-scale image features, an Adaptive Dense Feature Fusion (ADFF) module, which adaptively fuses effective features from all scales for inferring structures of each scale, is introduced. Experiment results on the challenging NYU-Depth v2 dataset demonstrate that our proposed approach achieves state-of-the-art performance in both qualitative and quantitative evaluation. The code is available at https://github.com/Xt-Chen/SARPN.
We present an approach to depth estimation that fuses information from a stereo pair with sparse range measurements derived from a LIDAR sensor or a range camera. The goal of this work is to exploit the complementary strengths of the two sensor modal ities, the accurate but sparse range measurements and the ambiguous but dense stereo information. These two sources are effectively and efficiently fused by combining ideas from anisotropic diffusion and semi-global matching. We evaluate our approach on the KITTI 2015 and Middlebury 2014 datasets, using randomly sampled ground truth range measurements as our sparse depth input. We achieve significant performance improvements with a small fraction of range measurements on both datasets. We also provide qualitative results from our platform using the PMDTec Monstar sensor. Our entire pipeline runs on an NVIDIA TX-2 platform at 5Hz on 1280x1024 stereo images with 128 disparity levels.
Estimating depth from RGB images is a long-standing ill-posed problem, which has been explored for decades by the computer vision, graphics, and machine learning communities. Among the existing techniques, stereo matching remains one of the most wide ly used in the literature due to its strong connection to the human binocular system. Traditionally, stereo-based depth estimation has been addressed through matching hand-crafted features across multiple images. Despite the extensive amount of research, these traditional techniques still suffer in the presence of highly textured areas, large uniform regions, and occlusions. Motivated by their growing success in solving various 2D and 3D vision problems, deep learning for stereo-based depth estimation has attracted growing interest from the community, with more than 150 papers published in this area between 2014 and 2019. This new generation of methods has demonstrated a significant leap in performance, enabling applications such as autonomous driving and augmented reality. In this article, we provide a comprehensive survey of this new and continuously growing field of research, summarize the most commonly used pipelines, and discuss their benefits and limitations. In retrospect of what has been achieved so far, we also conjecture what the future may hold for deep learning-based stereo for depth estimation research.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا