ترغب بنشر مسار تعليمي؟ اضغط هنا

Bias for the Trace of the Resolvent and Its Application on Non-Gaussian and Non-centered MIMO Channels

57   0   0.0 ( 0 )
 نشر من قبل Xin Zhang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The mutual information (MI) of Gaussian multi-input multi-output (MIMO) channels has been evaluated by utilizing random matrix theory (RMT) and shown to asymptotically follow Gaussian distribution, where the ergodic mutual information (EMI) converges to a deterministic quantity. However, with non-Gaussian channels, there is a bias between the EMI and its deterministic equivalent (DE), whose evaluation is not available in the literature. This bias of the EMI is related to the bias for the trace of the resolvent in large RMT. In this paper, we first derive the bias for the trace of the resolvent, which is further extended to compute the bias for the linear spectral statistics (LSS). Then, we apply the above results on non-Gaussian MIMO channels to determine the bias for the EMI. It is also proved that the bias for the EMI is -0.5 times of that for the variance of the MI. Finally, the derived bias is utilized to modify the central limit theory (CLT) and approximate the outage probability. Numerical results show that the modified CLT significantly outperforms the previous results in approximating the distribution of the MI and can accurately determine the outage probability.



قيم البحث

اقرأ أيضاً

This paper extends the single crossing point property of the scalar MMSE function, derived by Guo, Shamai and Verdu (first presented in ISIT 2008), to the parallel degraded MIMO scenario. It is shown that the matrix Q(t), which is the difference betw een the MMSE assuming a Gaussian input and the MMSE assuming an arbitrary input, has, at most, a single crossing point for each of its eigenvalues. Together with the I-MMSE relationship, a fundamental connection between Information Theory and Estimation Theory, this new property is employed to derive results in Information Theory. As a simple application of this property we provide an alternative converse proof for the broadcast channel (BC) capacity region under covariance constraint in this specific setting.
The scalar additive Gaussian noise channel has the single crossing point property between the minimum-mean square error (MMSE) in the estimation of the input given the channel output, assuming a Gaussian input to the channel, and the MMSE assuming an arbitrary input. This paper extends the result to the parallel MIMO additive Gaussian channel in three phases: i) The channel matrix is the identity matrix, and we limit the Gaussian input to a vector of Gaussian i.i.d. elements. The single crossing point property is with respect to the snr (as in the scalar case). ii) The channel matrix is arbitrary, the Gaussian input is limited to an independent Gaussian input. A single crossing point property is derived for each diagonal element of the MMSE matrix. iii) The Gaussian input is allowed to be an arbitrary Gaussian random vector. A single crossing point property is derived for each eigenvalue of the MMSE matrix. These three extensions are then translated to new information theoretic properties on the mutual information, using the fundamental relationship between estimation theory and information theory. The results of the last phase are also translated to a new property of Fishers information. Finally, the applicability of all three extensions on information theoretic problems is demonstrated through: a proof of a special case of Shannons vector EPI, a converse proof of the capacity region of the parallel degraded MIMO broadcast channel (BC) under per-antenna power constrains and under covariance constraints, and a converse proof of the capacity region of the compound parallel degraded MIMO BC under covariance constraint.
The problem of estimating an arbitrary random vector from its observation corrupted by additive white Gaussian noise, where the cost function is taken to be the Minimum Mean $p$-th Error (MMPE), is considered. The classical Minimum Mean Square Error (MMSE) is a special case of the MMPE. Several bounds, properties and applications of the MMPE are derived and discussed. The optimal MMPE estimator is found for Gaussian and binary input distributions. Properties of the MMPE as a function of the input distribution, SNR and order $p$ are derived. In particular, it is shown that the MMPE is a continuous function of $p$ and SNR. These results are possible in view of interpolation and change of measure bounds on the MMPE. The `Single-Crossing-Point Property (SCPP) that bounds the MMSE for all SNR values {it above} a certain value, at which the MMSE is known, together with the I-MMSE relationship is a powerful tool in deriving converse proofs in information theory. By studying the notion of conditional MMPE, a unifying proof (i.e., for any $p$) of the SCPP is shown. A complementary bound to the SCPP is then shown, which bounds the MMPE for all SNR values {it below} a certain value, at which the MMPE is known. As a first application of the MMPE, a bound on the conditional differential entropy in terms of the MMPE is provided, which then yields a generalization of the Ozarow-Wyner lower bound on the mutual information achieved by a discrete input on a Gaussian noise channel. As a second application, the MMPE is shown to improve on previous characterizations of the phase transition phenomenon that manifests, in the limit as the length of the capacity achieving code goes to infinity, as a discontinuity of the MMSE as a function of SNR. As a final application, the MMPE is used to show bounds on the second derivative of mutual information, that tighten previously known bounds.
This work concerns the behavior of good (capacity achieving) codes in several multi-user settings in the Gaussian regime, in terms of their minimum mean-square error (MMSE) behavior. The settings investigated in this context include the Gaussian wire tap channel, the Gaussian broadcast channel (BC) and the Gaussian BC with confidential messages (BCC). In particular this work addresses the effects of transmitting such codes on unintended receivers, that is, receivers that neither require reliable decoding of the transmitted messages nor are they eavesdroppers that must be kept ignorant, to some extent, of the transmitted message. This work also examines the effect on the capacity region that occurs when we limit the allowed disturbance in terms of MMSE on some unintended receiver. This trade-off between the capacity region and the disturbance constraint is given explicitly for the Gaussian BC and the secrecy capacity region of the Gaussian BCC.
This paper studies the capacity of a general multiple-input multiple-output (MIMO) free-space optical intensity channel under a per-input-antenna peak-power constraint and a total average-power constraint over all input antennas. The focus is on the scenario with more transmit than receive antennas. In this scenario, different input vectors can yield identical distributions at the output, when they result in the same image vector under multiplication by the channel matrix. We first determine the most energy-efficient input vectors that attain each of these image vectors. Based on this, we derive an equivalent capacity expression in terms of the image vector, and establish new lower and upper bounds on the capacity of this channel. The bounds match when the signal-to-noise ratio (SNR) tends to infinity, establishing the high-SNR asymptotic capacity. We also characterize the low-SNR slope of the capacity of this channel.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا