ﻻ يوجد ملخص باللغة العربية
The mutual information (MI) of Gaussian multi-input multi-output (MIMO) channels has been evaluated by utilizing random matrix theory (RMT) and shown to asymptotically follow Gaussian distribution, where the ergodic mutual information (EMI) converges to a deterministic quantity. However, with non-Gaussian channels, there is a bias between the EMI and its deterministic equivalent (DE), whose evaluation is not available in the literature. This bias of the EMI is related to the bias for the trace of the resolvent in large RMT. In this paper, we first derive the bias for the trace of the resolvent, which is further extended to compute the bias for the linear spectral statistics (LSS). Then, we apply the above results on non-Gaussian MIMO channels to determine the bias for the EMI. It is also proved that the bias for the EMI is -0.5 times of that for the variance of the MI. Finally, the derived bias is utilized to modify the central limit theory (CLT) and approximate the outage probability. Numerical results show that the modified CLT significantly outperforms the previous results in approximating the distribution of the MI and can accurately determine the outage probability.
This paper extends the single crossing point property of the scalar MMSE function, derived by Guo, Shamai and Verdu (first presented in ISIT 2008), to the parallel degraded MIMO scenario. It is shown that the matrix Q(t), which is the difference betw
The scalar additive Gaussian noise channel has the single crossing point property between the minimum-mean square error (MMSE) in the estimation of the input given the channel output, assuming a Gaussian input to the channel, and the MMSE assuming an
The problem of estimating an arbitrary random vector from its observation corrupted by additive white Gaussian noise, where the cost function is taken to be the Minimum Mean $p$-th Error (MMPE), is considered. The classical Minimum Mean Square Error
This work concerns the behavior of good (capacity achieving) codes in several multi-user settings in the Gaussian regime, in terms of their minimum mean-square error (MMSE) behavior. The settings investigated in this context include the Gaussian wire
This paper studies the capacity of a general multiple-input multiple-output (MIMO) free-space optical intensity channel under a per-input-antenna peak-power constraint and a total average-power constraint over all input antennas. The focus is on the