ترغب بنشر مسار تعليمي؟ اضغط هنا

Periodic solutions of a semilinear variable coefficient wave equation under asymptotic nonresonance conditions

159   0   0.0 ( 0 )
 نشر من قبل Shuguan Ji
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the periodic solutions of a semilinear variable coefficient wave equation arising from the forced vibrations of a nonhomogeneous string and the propagation of seismic waves in nonisotropic media. The variable coefficient characterizes the inhomogeneity of media and its presence usually leads to the destruction of the compactness of the inverse of linear wave operator with periodic-Dirichlet boundary conditions on its range. In the pioneering work of Barbu and Pavel (1997), it gives the existence and regularity of periodic solution for Lipschitz, nonresonant and monotone nonlinearity under the assumption $eta_u>0$ (see Sect. 2 for its definition) on the coefficient $u(x)$ and leaves the case $eta_u=0$ as an open problem. In this paper, by developing the invariant subspace method and using the complete reduction technique and Leray-Schauder theory, we obtain the existence of periodic solutions for such a problem when the nonlinear term satisfies the asymptotic nonresonance conditions. Our result not only does not need any requirements on the coefficient except for the natural positivity assumption (i.e., $u(x)>0$), but also does not need the monotonicity assumption on the nonlinearity. In particular, when the nonlinear term is an odd function and satisfies the global nonresonance conditions, there is only one (trivial) solution to this problem on the invariant subspace.



قيم البحث

اقرأ أيضاً

210 - Hui Wei , Shuguan Ji 2020
This paper is devoted to the study of periodic solutions for a semilinear Euler-Bernoulli beam equation with variable coefficients. Such mathematical model may be described the infinitesimal, free, undamped in-plane bending vibrations of a thin strai ght elastic beam. When the frequency $omega =frac{2pi}{T}$ is rational, some properties of the beam operator with variable coefficients are investigated. We obtain the existence of periodic solutions when the nonlinear term is monotone and bounded.
101 - Taeko Yamazaki 2018
This paper is concerned with the initial value problem for semilinear wave equation with structural damping $u_{tt}+(-Delta)^{sigma}u_t -Delta u =f(u)$, where $sigma in (0,frac{1}{2})$ and $f(u) sim |u|^p$ or $u |u|^{p-1}$ with $p> 1 + {2}/(n - 2 sig ma)$. We first show the global existence for initial data small in some weighted Sobolev spaces on $mathcal R^n$ ($n ge 2$). Next, we show that the asymptotic profile of the solution above is given by a constant multiple of the fundamental solution of the corresponding parabolic equation, provided the initial data belong to weighted $L^1$ spaces.
302 - Hui Wei , Shuguan Ji 2018
This paper is devoted to the study of periodic (in time) solutions to an one-dimensional semilinear wave equation with $x$-dependent coefficients under various homogeneous boundary conditions. Such a model arises from the forced vibrations of a nonho mogeneous string and propagation of seismic waves in nonisotropic media. By combining variational methods with an approximation argument, we prove that there exist infinitely many periodic solutions whenever the period is a rational multiple of the length of the spatial interval. The proof is essentially based on the spectral properties of the wave operator with $x$-dependent coefficients.
245 - Hui Wei , Shuguan Ji 2018
This paper is concerned with the periodic (in time) solutions to an one-dimensional semilinear wave equation with $x$-dependent coefficient. Such a model arises from the forced vibrations of a nonhomogeneous string and propagation of seismic waves in nonisotropic media. By combining variational methods with saddle point reduction technique, we obtain the existence of at least three periodic solutions whenever the period is a rational multiple of the length of the spatial interval. Our method is based on a delicate analysis for the asymptotic character of the spectrum of the wave operator with $x$-dependent coefficients, and the spectral properties play an essential role in the proof.
80 - Pierre Gabriel , MAMBA 2019
We prove, in the framework of measure solutions, that the equal mito-sis equation present persistent asymptotic oscillations. To do so we adopt a duality approach, which is also well suited for proving the well-posedness when the division rate is unb ounded. The main difficulty for characterizing the asymptotic behavior is to define the projection onto the subspace of periodic (rescaled) solutions. We achieve this by using the generalized relative entropy structure of the dual problem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا