ترغب بنشر مسار تعليمي؟ اضغط هنا

Equivariant Variance Estimation for Multiple Change-point Model

107   0   0.0 ( 0 )
 نشر من قبل Ning Hao
 تاريخ النشر 2021
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

The variance of noise plays an important role in many change-point detection procedures and the associated inferences. Most commonly used variance estimators require strong assumptions on the true mean structure or normality of the error distribution, which may not hold in applications. More importantly, the qualities of these estimators have not been discussed systematically in the literature. In this paper, we introduce a framework of equivariant variance estimation for multiple change-point models. In particular, we characterize the set of all equivariant unbiased quadratic variance estimators for a family of change-point model classes, and develop a minimax theory for such estimators.



قيم البحث

اقرأ أيضاً

Structural breaks have been commonly seen in applications. Specifically for detection of change points in time, research gap still remains on the setting in ultra high dimension, where the covariates may bear spurious correlations. In this paper, we propose a two-stage approach to detect change points in ultra high dimension, by firstly proposing the dynamic titled current correlation screening method to reduce the input dimension, and then detecting possible change points in the framework of group variable selection. Not only the spurious correlation between ultra-high dimensional covariates is taken into consideration in variable screening, but non-convex penalties are studied in change point detection in the ultra high dimension. Asymptotic properties are derived to guarantee the asymptotic consistency of the selection procedure, and the numerical investigations show the promising performance of the proposed approach.
Understanding forest fire spread in any region of Canada is critical to promoting forest health, and protecting human life and infrastructure. Quantifying fire spread from noisy images, where regions of a fire are separated by change-point boundaries , is critical to faithfully estimating fire spread rates. In this research, we develop a statistically consistent smooth estimator that allows us to denoise fire spread imagery from micro-fire experiments. We develop an anisotropic smoothing method for change-point data that uses estimates of the underlying data generating process to inform smoothing. We show that the anisotropic local constant regression estimator is consistent with convergence rate $Oleft(n^{-1/{(q+2)}}right)$. We demonstrate its effectiveness on simulated one- and two-dimensional change-point data and fire spread imagery from micro-fire experiments.
We study variance estimation and associated confidence intervals for parameters characterizing genetic effects from genome-wide association studies (GWAS) misspecified mixed model analysis. Previous studies have shown that, in spite of the model miss pecification, certain quantities of genetic interests are estimable, and consistent estimators of these quantities can be obtained using the restricted maximum likelihood (REML) method under a misspecified linear mixed model. However, the asymptotic variance of such a REML estimator is complicated and not ready to be implemented for practical use. In this paper, we develop practical and computationally convenient methods for estimating such asymptotic variances and constructing the associated confidence intervals. Performance of the proposed methods is evaluated empirically based on Monte-Carlo simulations and real-data application.
159 - Qiang Sun 2021
This paper studies robust mean estimators for distributions with only finite variances. We propose a new loss function that is a function of the mean parameter and a robustification parameter. By simultaneously optimizing the empirical loss with resp ect to both parameters, we show that the resulting estimator for the robustification parameter can automatically adapt to the data and the unknown variance. Thus the resulting mean estimator can achieve near-optimal finite-sample performance. Compared with prior work, our method is computationally efficient and user-friendly. It does not need cross-validation to tune the robustification parameter.
288 - Kangjie Zhou , Jinzhu Jia 2021
Propensity score methods have been shown to be powerful in obtaining efficient estimators of average treatment effect (ATE) from observational data, especially under the existence of confounding factors. When estimating, deciding which type of covari ates need to be included in the propensity score function is important, since incorporating some unnecessary covariates may amplify both bias and variance of estimators of ATE. In this paper, we show that including additional instrumental variables that satisfy the exclusion restriction for outcome will do harm to the statistical efficiency. Also, we prove that, controlling for covariates that appear as outcome predictors, i.e. predict the outcomes and are irrelevant to the exposures, can help reduce the asymptotic variance of ATE estimation. We also note that, efficiently estimating the ATE by non-parametric or semi-parametric methods require the estimated propensity score function, as described in Hirano et al. (2003)cite{Hirano2003}. Such estimation procedure usually asks for many regularity conditions, Rothe (2016)cite{Rothe2016} also illustrated this point and proposed a known propensity score (KPS) estimator that requires mild regularity conditions and is still fully efficient. In addition, we introduce a linearly modified (LM) estimator that is nearly efficient in most general settings and need not estimation of the propensity score function, hence convenient to calculate. The construction of this estimator borrows idea from the interaction estimator of Lin (2013)cite{Lin2013}, in which regression adjustment with interaction terms are applied to deal with data arising from a completely randomized experiment. As its name suggests, the LM estimator can be viewed as a linear modification on the IPW estimator using known propensity scores. We will also investigate its statistical properties both analytically and numerically.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا