ترغب بنشر مسار تعليمي؟ اضغط هنا

Confined and eruptive catastrophes of solar magnetic flux ropes caused by mass loading and unloading

116   0   0.0 ( 0 )
 نشر من قبل Quanhao Zhang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It is widely accepted that coronal magnetic flux ropes are the core structures of large-scale solar eruptive activities, which inflict dramatic impacts on the solar-terrestrial system. Previous studies have demonstrated that varying magnetic properties of a coronal flux rope system could result in a catastrophe of the rope, which may trigger solar eruptive activities. Since the total mass of a flux rope also plays an important role in stabilizing the rope, we use 2.5-dimensional magnetohydrodynamic (MHD) numerical simulations in this letter to investigate how a flux rope evolves as its total mass varies. It is found that an unloading process that decreases the total mass of the rope could result in an upward (eruptive) catastrophe in the flux rope system, during which the rope jumps upward and the magnetic energy is released. This indicates that mass unloading processes could initiate the eruption of the flux rope. Moreover, when the system is not too diffusive, there is also a downward (confined) catastrophe that could be caused by mass loading processes, via which the total mass accumulates. The magnetic energy, however, is increased during the downward catastrophe, indicating that mass loading processes could cause confined activities that may contribute to the storage of energy before the onset of coronal eruptions.

قيم البحث

اقرأ أيضاً

75 - Ting Li , Anqin Chen , Yijun Hou 2021
With the aim of understanding how the magnetic properties of active regions (ARs) control the eruptive character of solar flares, we analyze 719 flares of Geostationary Operational Environmental Satellite (GOES) class $geq$C5.0 during 2010$-$2019. We carry out the first statistical study that investigates the flare-coronal mass ejections (CMEs) association rate as function of the flare intensity and the AR characteristics that produces the flare, in terms of its total unsigned magnetic flux ($Phi$$_{AR}$). Our results show that the slope of the flare-CME association rate with flare intensity reveals a steep monotonic decrease with $Phi$$_{AR}$. This means that flares of the same GOES class but originating from an AR of larger $Phi$$_{AR}$, are much more likely confined. Based on an AR flux as high as 1.0$times$$10^{24}$ Mx for solar-type stars, we estimate that the CME association rate in X100-class ``superflares is no more than 50%. For a sample of 132 flares $geq$M2.0 class, we measure three non-potential parameters including the length of steep gradient polarity inversion line (L$_{SGPIL}$), the total photospheric free magnetic energy (E$_{free}$) and the area with large shear angle (A$_{Psi}$). We find that confined flares tend to have larger values of L$_{SGPIL}$, E$_{free}$ and A$_{Psi}$ compared to eruptive flares. Each non-potential parameter shows a moderate positive correlation with $Phi$$_{AR}$. Our results imply that $Phi$$_{AR}$ is a decisive quantity describing the eruptive character of a flare, as it provides a global parameter relating to the strength of the background field confinement.
We investigate the coronal magnetic energy and helicity budgets of ten solar ARs, around the times of large flares. In particular, we are interested in a possible relation of the derived quantities to the particular type of the flares that the AR pro duces, i.e., whether they are associated with a CME or they are confined. Using an optimization approach, we employ time series of 3D nonlinear force-free magnetic field models of ten ARs, covering a time span of several hours around the time of occurrence of large solar flares (GOES class M1.0 and larger). We subsequently compute the 3D magnetic vector potentials associated to the model 3D coronal magnetic field using a finite-volume method. This allows us to correspondingly compute the coronal magnetic energy and helicity budgets, as well as related (intensive) quantities such as the relative contribution of free magnetic energy, $E_{mathrm{F}}/{E}$ (energy ratio), the fraction of non-potential (current-carrying) helicity, $|H_{mathrm{J}}|/|{H_{V}}|$ (helicity ratio), and the normalized current-carrying helicity, $|H_{mathrm{J}}|/{phi^{prime}}^{2}$. The total energy and helicity budgets of flare-productive ARs (extensive parameters) cover a broad range of magnitudes, with no obvious relation to the eruptive potential of the individual ARs, i.e., whether or not a CME is produced in association with the flare. The intensive eruptivity proxies, $E_{mathrm{F}}/{E}$ and $|H_{mathrm{J}}|/|{H_{V}}|$, and $|H_{mathrm{J}}|/{phi^{prime}}^{2}$, however, seem to be distinctly different for ARs that produced CME-associated large flares compared to those which produced confined flares. For the majority of ARs in our sample, we are able to identify characteristic pre-flare magnitudes of the intensive quantities, clearly associated to subsequent CME-productivity.
It remains unclear how solar flares are triggered and in what conditions they can be eruptive with coronal mass ejections. Magnetic flux ropes (MFRs) has been suggested as the central magnetic structure of solar eruptions, and their ideal instabiliti es including mainly the kink instability (KI) and torus instability (TI) provide important candidates for triggering mechanisms. Here using magnetic field extrapolations from observed photospheric magnetograms, we systematically studied the variation of coronal magnetic fields, focusing on MFRs, through major flares including 29 eruptive and 16 confined events. We found that nearly 90% events possess MFR before flare and 70% have MFR even after flare. We calculated the controlling parameters of KI and TI, including the MFRs maximum twist number and the decay index of its strapping field. Using the KI and TI thresholds empirically derived from solely the pre-flare MFRs, two distinct different regimes are shown in the variation of the MFR controlling parameters through flares. For the events with both parameters below their thresholds before flare, we found no systematic change of the parameters after the flares, in either the eruptive or confined events. In contrast, for the events with any of the two parameters exceeding their threshold before flare (most of them are eruptive), there is systematic decrease in the parameters to below their thresholds after flares. These results provide a strong constraint for the values of the instability thresholds and also stress the necessity of exploring other eruption mechanisms in addition to the ideal instabilities.
We compare the coronal magnetic energy and helicity of two solar active regions (ARs), prolific in major eruptive (AR~11158) and confined (AR~12192) flaring, and analyze the potential of deduced proxies to forecast upcoming flares. Based on nonlinear force-free (NLFF) coronal magnetic field models with a high degree of solenoidality, and applying three different computational methods to investigate the coronal magnetic helicity, we are able to draw conclusions with a high level of confidence. Based on real observations of two solar ARs we checked trends regarding the potential eruptivity of the active-region corona, as suggested earlier in works that were based on numerical simulations, or solar observations. Our results support that the ratio of current-carrying to total helicity, $|H_mathrm{J}|/|H_mathrm{V}|$, shows a strong ability to indicate the eruptive potential of a solar AR. However, $|H_mathrm{J}|/|H_mathrm{V}|$ seems not to be indicative for the magnitude or type of an upcoming flare (confined or eruptive). Interpreted in context with earlier observational studies, our findings furthermore support that the total relative helicity normalized to the magnetic flux at the NLFF models lower boundary, $H_mathrm{V}/phi^2$, represents no indicator for the eruptivity.
We investigate the formation times of eruptive magnetic flux ropes relative to the onset of solar eruptions, which is important for constraining models of coronal mass ejection (CME) initiation. We inspected uninterrupted sequences of 131 AA images t hat spanned more than eight hours and were obtained by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) to identify the formation times of hot flux ropes that erupted in CMEs from locations close to the limb. The appearance of the flux ropes as well as their evolution toward eruptions were determined using morphological criteria. Two-thirds (20/30) of the flux ropes were formed well before the onset of the eruption (from 51 minutes to more than eight hours), and their formation was associated with the occurrence of a confined flare. We also found four events with preexisting hot flux ropes whose formations occurred a matter of minutes (from three to 39) prior to the eruptions without any association with distinct confined flare activity. Six flux ropes were formed once the eruptions were underway. However, in three of them, prominence material could be seen in 131 AA images, which may indicate the presence of preexisting flux ropes that were not hot. The formation patterns of the last three groups of hot flux ropes did not show significant differences. For the whole population of events, the mean and median values of the time difference between the onset of the eruptive flare and the appearance of the hot flux rope were 151 and 98 minutes, respectively. Our results provide, on average, indirect support for CME models that involve preexisting flux ropes; on the other hand, for a third of the events, models in which the ejected flux rope is formed during the eruption appear more appropriate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا