ترغب بنشر مسار تعليمي؟ اضغط هنا

From Warm Planets to Perpendicular Hot Planets

56   0   0.0 ( 0 )
 نشر من قبل Rebekah Dawson
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High eccentricity tidal migration (HEM) is a promising channel for the origins of hot Jupiters and hot Neptunes. In the typical HEM scenario, a planet forms beyond the ice line, but alternatively a planet can disk migrate or form warm and undergo a short final stretch of HEM. At the warm origin point, general relavistic precession can reduce the amplitude of Kozai-Lidov oscillations driven by an outer companion. We show that warm planets that achieve HEM under these conditions -- and with common types of planetary and stellar companions -- tend to end up with near-polar spin-orbit alignments (psi = 50-130 degrees) instead of concentrated at 40 and 140 degrees. Thus short distance, GR-reduced HEM is a possible explanation for the observed population of perpendicular planets.



قيم البحث

اقرأ أيضاً

Observing the Rossiter-McLaughlin effect during a planetary transit allows the determination of the angle $lambda$ between the sky projections of the stars spin axis and the planets orbital axis. Such observations have revealed a large population of well-aligned systems and a smaller population of misaligned systems, with values of $lambda$ ranging up to 180$^circ$. For a subset of 57 systems, we can now go beyond the sky projection and determine the 3-d obliquity $psi$ by combining the Rossiter-McLaughlin data with constraints on the line-of-sight inclination of the spin axis. Here we show that the misaligned systems do not span the full range of obliquities; they show a preference for nearly-perpendicular orbits ($psi=80-125^circ$) that seems unlikely to be a statistical fluke. If confirmed by further observations, this pile-up of polar orbits is a clue about the unknown processes of obliquity excitation and evolution.
We have bandmerged candidate transiting planetary systems (from the Kepler satellite) and confirmed transiting planetary systems (from the literature) with the recent Wide-field Infrared Survey Explorer (WISE) preliminary release catalog. We have fou nd 13 stars showing infrared excesses at either 12 and/or 22 microns. Without longer wavelength observations it is not possible to conclusively determine the nature of the excesses, although we argue that they are likely due to debris disks around the stars. If confirmed, our sample ~ doubles the number of currently known warm excess disks around old main sequence stars. The ratios between the measured fluxes and the stellar photospheres are generally larger than expected for Gyr-old stars, such as these planetary hosts. Assuming temperature limits for the dust and emission from large dust particles, we derive estimates for the disk radii. These values are comparable to the planets semi-major axis, suggesting that the planets may be stirring the planetesimals in the system.
191 - Jason H. Steffen 2012
We present the results of a search for planetary companions orbiting near hot Jupiter planet candidates (Jupiter-size candidates with orbital periods near 3 days) identified in the Kepler data through its sixth quarter of science operations. Special emphasis is given to companions between the 2:1 interior and exterior mean-motion resonances. A photometric transit search excludes companions with sizes ranging from roughly 2/3 to 5 times the size of the Earth, depending upon the noise properties of the target star. A search for dynamically induced deviations from a constant period (transit timing variations or TTVs) also shows no significant signals. In contrast, comparison studies of warm Jupiters (with slightly larger orbits) and hot Neptune-size candidates do exhibit signatures of additional companions with these same tests. These differences between hot Jupiters and other planetary systems denote a distinctly different formation or dynamical history.
It has been known for a decade that hot stars with hot Jupiters tend to have high obliquities. Less is known about the degree of spin-orbit alignment for hot stars with other kinds of planets. Here, we re-assess the obliquities of hot Kepler stars wi th transiting planets smaller than Neptune, based on spectroscopic measurements of their projected rotation velocities (vsini). The basis of the method is that a lower obliquity -- all other things being equal -- causes sini to be closer to unity and increases the value of vsini. We sought evidence for this effect using a sample of 150 Kepler stars with effective temperatures between 5950 and 6550K and a control sample of 101 stars with matching spectroscopic properties and random orientations. The planet hosts have systematically higher values of vsini than the control stars, but not by enough to be compatible with perfect spin-orbit alignment. The mean value of sini is 0.856 +/- 0.036, which is 4-sigma away from unity (perfect alignment), and 2-sigma away from pi/4 (random orientations). There is also evidence that the hottest stars have a broader obliquity distribution: when modeled separately, the stars cooler than 6250K have <sini> = 0.928 +/- 0.042, while the hotter stars are consistent with random orientations. This is similar to the pattern previously noted for stars with hot Jupiters. Based on these results, obliquity excitation for early-G and late-F stars appears to be a general outcome of star and planet formation, rather than being exclusively linked to hot Jupiter formation.
We report on the masses, sizes, and orbits of the planets orbiting 22 Kepler stars. There are 49 planet candidates around these stars, including 42 detected through transits and 7 revealed by precise Doppler measurements of the host stars. Based on a n analysis of the Kepler brightness measurements, along with high-resolution imaging and spectroscopy, Doppler spectroscopy, and (for 11 stars) asteroseismology, we establish low false-positive probabilities for all of the transiting planets (41 of 42 have a false-positive probability under 1%), and we constrain their sizes and masses. Most of the transiting planets are smaller than 3X the size of Earth. For 16 planets, the Doppler signal was securely detected, providing a direct measurement of the planets mass. For the other 26 planets we provide either marginal mass measurements or upper limits to their masses and densities; in many cases we can rule out a rocky composition. We identify 6 planets with densities above 5 g/cc, suggesting a mostly rocky interior for them. Indeed, the only planets that are compatible with a purely rocky composition are smaller than ~2 R_earth. Larger planets evidently contain a larger fraction of low-density material (H, He, and H2O).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا